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SUMMARY

Analytical methods for combining flight acceleration and strain data with
shake test mobility data to predict the effects of structural changes on flight
vibrations and strains are presented. This integration of structural dynamic
analysis with flight performance is referred to as analytical testing. The
objective of this methodology is to analytically estimate the results of flight
testing contemplated structural changes with minimum flying and change trials.
The category of changes to the aircraft includes mass, stiffness, absorbers,
isolators, and active suppressors. Examples of applying the analytical testing
methodology using flight test and shake test data measured on an AH-1G heli-
copter are included. The techniques and procedures for vibration testing and

modal analysis are also described.
INTRODUCTION

Helicopter structural dynamics and rotor-induced vibratory loads impact the
design, analysis, and evaluation of vibrations. The vibration environment can
be generalized by relationships between critical points of airframe response and
points of vibratory forcing. Vibration, conceived of in terms of how much these
critical points shake, continues to be a major problem in helicopter dynamics.
Structural fatique, a result primarily of vibration, is of much greater conse-
quence to the structural integrity of the helicopter and the reliability of its
systems.]’2 The large number of airframe locations at which vibrations affect
structural integrity, performance, and overall mission effectiveness complicates
the issue. The vibration problem is also complicated by the many dynamic condi-
tions that must be evaluated during helicopter development. The number of con-
figuration changes in the operation of typical Army helicopters is enormous. If
each of these changes is flight tested for baseline rotorcraft conditions repre-
sented by gross weight, center of gravity, fuel loading, cargo Toading, and
flight conditions, then thousands of structural dynamic conditions must be eval-
uated. Favorable vibrations at one airframe location due to structural changes
may, in fact, degrade vibratjon at other points. Thus, the vibration solution
process becomes one of engineering compromise.



Structural dynamics analysis has not proven to be one of the most useful
engineering tools in helicopter deve]opment.1 As conventionally practiced,
most helicopter vibration tests provide limited information for resolving
vibration issues. Helicopter flight vibration tests provide a direct measure
of the actual vibration environment while airframe ground vibration tests are
most often conducted to correlate analytical predictions of airframe resonances
and mode shapes. If there is reasonable agreement between analysis and test,
then confidence in the validity of the analysis is enhanced. However, if
reasonable agreement is not obtained, then an impasse results. Vibration prob-
lems are extremely difficult to quantify and have been solved by trial-and-error
ground and flight vibration testing.

The integration of structural dynamics analysis with fiight performance,
herein referred to as analytical testing, appears to offer a practical method-
ology to the vibration solution process in helicopter development. This report
describes analytical methods for combining flight acceleration and strain data
with shake test mobility data to estimate the effects of contemplated changes
on aircraft vibrations and stresses for various flight conditions and maneuvers.
The category of changes to the aircraft includes external stores, weapons,
cargo, changes in structure or materials of structure, absorbers, isolators, or
active vibration suppressors. The objective of analytical testing methodology
is to analytically estimate the results of flight testing such changes with
minimum flying and change trials and to provide accurate and consistent dynamics

information for reduced cost and testing time.

The present investigation applied the analytical testing methodology in
conjunction with full-scale helicopter ground and flight test vibration data.
An AH-1G test vehicle was utilized in this project to provide ground vibration
data of realistic quality. Flight test data of the AH-1G was obtained from
another Army program on an as-available basis. The analytical testing examples
in this report use AH-1G data to illustrate possible generic applications of
the methodology. The authors do not suggest or imply applicability of these
examples to the AH-1G or any other specific helicopter. The applications des-
cribed herein were directed to the practical acquisition of helicopter vibra-
tion data for analytical testing and the possible utilization of the method.



The reader is cautioned not to interpret the results of these illustrations as

representing experimental validation of analytical testing in any possible

application.
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LIST OF SYMBOLS

modal acceleration, g/N (g/1b)

change factor (a constant), such as the proportionality of skin
thickness of the change

generalized damping, N-s/m (1b-s/in.)

diameter of modal circle, m/N (in./1b)

damping matrix, N-s/m (1b-s/in.)

rigid body acceleration coefficient, g/MN (g/1b)

force, N(1b), or frequency, Hz

mode frequency function, defined in text

structural damping coefficient or units of acceleration
gravitational acceleration, 9.8066 m/s2 (32.174 ft/sz)
imaginary operator, v- 1

generalized stiffness, N/m (}b/in.)

stiffness matrix, N/m (1b/in.)

absorber mass or generalized mass, kg (lb—sz/in.)
moment, N-m {1b-ft)

mass matrix, kg (1b—52/1n.)

rotor revolution, thus 2P denotes twice rotor revolution
vibratory displacement, m (in.)

vibratory acceleration, g

vector of complex responses, defined in text

mobility residual, g/N (g/1b)

arc length of modal circle or, in Matrix Difference Method,

X
time, s
transformation matrix = {%%9]

sweep speed required for swept sine shake testing, Hz/s

maximum speed attainable in level flight at maximum continuous
power



displacement, m (in.)
linear acceleration, m/s2 (in./sz)

displacement vector of a steadily vibrating undamped multiple
degree of freedom system

Fourier transform of the accelerations
displacement mobility, m/N (in./1b)

mobility of structural change, m/N (in./1b)

strain mobility, N' (1b™1)

acceleration mobility, g/N (g/1b)

impedance, N/m (1b/in.) in Appendices A and B
impedance change

impedance matrix, N/m (1b/in.)

angle of bar in simple bar truss or logarithmic sweep speed for
swept sine shake testing, dec/min

frequency ratio

distance between colinear displacements, m (in.)
indicates change in variable following the symbol
mode resolution, Hz

strain, nondimensional

viscous damping factor

rotation response, deg

frequency dependent complex eigenvalue, Hz
frequency function

characteristic time for secular response, s

2

phase angle
normalized mode

orthonormal mode, kg-]/z (1n.1/2/]b1/2_s)

orthonormal strain mode

forcing frequency, rad/s

natural frequency of the nth mode, rad/s
absorber tuning frequency, rad/s

imaginary component of complex variable
real component of complex variable



()
( )/

complex conjugate

denotes amplitude and phase of complex variable
rectangular or square matrix

column matrix

row matrix

matrix transpose
matrix inverse

matrix pseudoinverse
diagonal matrix
identity matrix
partial derivative



THE PRACTICAL ASPECTS OF ANALYTICAL TESTING

Analytical testing can be applied in three stages of helicopter develop-
ment; namely, during preliminary design, after construction but before flight,
and during development flight testing. In other words, the vibration data can
originate from analysis or test or in combination.

During the first stage of helicopter development, the helicopter exists on
paper and flight vibrations are simulated using available theoretical informa-
tion. Hub excitation estimates are obtained from rotor analyses and estimates
of downwash impingement and wake interferences can be obtained from aerodynamic
considerations. These estimated excitations for various maneuvers can be
applied to mobilities obtained from airframe finite element or similar dynamic
analyses to yield estimates of in-flight stresses and vibrations. The predic-
tion of helicopter vibrations ultimately requires consideration of the response
of the coupled rotor/airframe. In general, the degree of rotor/airframe coup-
1ing is strongly dependent on the characteristics of both structural and aero-

dynamic interface coupling.

Substructures and changes can be combined with the basic structure in the
analytical testing processes which can be implemented on interactive minicom-
puters.3 Therefore, the finite element program for each structural module
needs to be executed only one time to yield resonance and mode shape data.

Modal damping can be accounted for during analytical testing. This process
minimizes finite element program sizes and running times while allowing a large
number of nodes in the combined structure. In addition, it allows the repre-
sentation of nonproportional damping and, consequently, complex modes. The
complex modes, resonances, and modal damping of the combined structure can be
obtained by treating the combined mobilities as test data. Uncertainties of
theoretical resonances and modal damping can be evaluated by direct perturba-
tion of these parameters in the modal synthesis. The modal synthesis may also
include high frequency residual mobilities for local mode driving-point effects.
Uncertainties in rotor Toads estimates4 and in estimates of downwash impingement
and wake interference can be systematically assessed with variation in excita-
tion magnitudes and phasings during this stage of helicopter development.



In the second stage of helicopter development, after construction but
before flight, a shake test aircraft should be available. This non-flying
shake test aircraft would be used for analytical testing of changes, ground
flying for fatigue eva1uat1’on,5 and analysis of accidents. In this stage,
shake testing data can be used to refine the existing finite element
mode]s.6’7’8 Mobilities from finite element models of substructure can be com-
bined with mobilities from tests of other subsystems to obtain total system
mobilities, resonances, modal damping, and complex modes. In general, the
fuselage system mobilities and the mobilities of complex components, such as
engines, may be obtained through shake testing while mobilities of contemplated
changes, flexible portions of the airframe, and low mass structural appendages
would be obtained through finite element modeling. This separation between
finite element modeling and shake testing for analytical testing purposes
offers optimum utilization of finite element analysis and modal analysis shake
testing. The major accomplishment in this stage is the application of refined
mobilities for identifying favorable structural changes to adjust airframe
resonances and nodes. Theoretical estimates of the vibratory loads are com-
bined with these mobilities to estimate changes in vibrations and stresses.

During the third stage of helicopter development, analytical testing uses
only ground and flight vibration data to estimate changes in flight responses
caused by structural and configuration changes. As the flight envelope of the
prototype aircraft is expanded, flight vibration data can be applied directly
since the theoretical estimates of external excitations are no longer needed.
Anticipated changes such as stores, weapons, cargo, and structure can be exam-
ined for flight effects on vibrations and stresses before actual flight. Know-
ledge of the number, types, or locations of the external excitations is not
required. The only flight data necessary are accelerations and strains mea-

sured during the initial flight tests.



ANALYTICAL TESTING THEORY

The matrix equations of motion for a damped linear structure can be gener-
alized in the frequency domain as

[K] - % [M] + i [D(w)]]| (q} = (F} (1)

where [K], [M], and [D(w)] are Nth ordered stiffness, mass, and damping matrices,
respectively. The matrix terms on the lefthand side of equation (1) define the

displacement impedance matrix, [Z], or
[Z] {q} = {f} (2)

The dynamic responses can thus be characterized by the simple matrix equation

given by

(Y] (f} (3)

{g}
where

[v] = [z37! (4)

and the variables in equation (3) are complex valued and frequency dependent.

The matrix [Y] is the transfer function which relates the input excitations,

{f}, to the output responses, {q}. If the response vector is displacement,
velocity, or acceleration, then the transfer function is defined as the displace-
ment, velocity, or acceleration mobility, respectively. Compliance, mobility,
and inertance are sometimes used in the Titerature to define the corresponding
displacement, velocity, and acceleration mobilities.

Types of Mobilities

Mobilities are defined as partial derivatives of response with respect to
excitation in the frequency domain. In general, there are two separate types
of mobilities used in analytical testing which can be distinguished by consid-
ering the nature of the response and the excitation.



If the response is vibration (displacement, velocity, acceleration) and the
excitation is force or moment, then the mobility matrix consists of the fol-
lowing components

aqj/afk aqj/aMk

[Y] = (5)
aej/afk aej/aMk

where q and & are the respective translation and rotation responses; f and M
are the force and moment excitations, respectively. The reciprocity principle
for vibration mobilities is satisfied such that

aqj/afk = aqk/afj
aej/afk = aqk/aMj (6)
aej/aMk = aek/an

If the response is strain and the excitation is force, then the strain

mobility matrix becomes

{Y(E)} = [aej/afk} (7)

Let qj+1 represent a displacement colinear with qj and separated a distance 6j
from a3 Then, the strain at j is defined such that

e: = 1im (qi,q - G:)/6: (8)
J 50 3+l SRR

and the strain mobility becomes

Vi)/85 (9)

aej/afk = Tim (Yj+1,k - Y5 j

<Sj—>0

This type of strain mobility is useful for evaluating stiffness changes. The
application of 3e/af to analytical testing is discussed in the next chapter.
Note that the reciprocity principle is not satisfied for strain mobility; i.e.,



asj/afk # aek/afj : (10)

Analytical Testing Equations

The solution to helicopter vibration problems consists, in part, of pre-
dicting and confirming the flight vibration or strain effects of dynamic changes
in the airframe, on the rotor, or at the rotor/airframe interface. Let {q} and
{e} represent the baseline vibration and strain, respectively. Then, {q'} and {e'}
represent the change in baseline vibration and strain due to a dynamic change.
In theory, {q'} and {e'} can result from either a change in the mobility matrix
or a change in the vibratory loading. The basic analytical testing method con-
siders changes in the mobility matrix which can be synthesized by discrete as
well as multiple and distributed dynamic impedance adjustments. The category
of impedance changes that can be accommodated includes mass, stiffness, absor-
bers, isolators, and active suppressors. As shown in Appendix A, the matrix
equation for determining the change in baseline vibration for a general multi-

dimensional impedance change is
c -1
@ =@ - [rgg] aE o] {ar) (11)

where YI% is defined from the impedance change. The mobilities YqI and YII
represent transfer functions for the baseline structure at the change interface
and do not include the effects of the impedance change. In other words, for a
properly modeled impedance change, the effects on flight vibrations are evalu-
ated without incorporating the change in the baseline structure. Therefore,
only one NASTRAN or similar dynamic analysis is required to implement equa-
tion (11). If changes in strain, as opposed to vibration, are considered, then

equation (11) becomes

1= e - i) Iy S YH]_] e (12)

In summary, the changed flight responses (vibration or strain) are charact-
erized by the dynamics of the impedance change, the baseline flight responses,
and the baseline mobility responses. The operational equations can be used with
either theoretically derived vibration and strain data or ground and flight

10



vibration and strain measurements. In the next chapter, equations (11) and (12)
are considered for examining mass, stiffness, and absorber changes to illustrate
the analytical testing methodology.

Limitations of the Method

Basic to the analytical testing method are the assumptions that the struc-
ture is linear and that changes to the structure do not change the external
loadings. These conditions are only approximated in an actual helicopter
flight. The airframe is not a linear system, as shake tests of the AH-1G
showed, but it appears that it can be represented as linear for most practical
engineering purposes.

The second assumption is a workable approximation under some conditions of
change and not under others. It is important to note that the mobilities used
in analytical testing must be physically realizable and consistent for any
driving-point. Mobilities obtained using a Tumped mass representation of the
rotor at the hub violate this requirement but the practical effect of the viola-
tion is not known. Ideally, the mobilities of the airframe would contain the
dynamic effects of a rotating rotor in a vacuum and this might be approximated
by coupling theoretical rotor mobilities with shake test airframe mobilities in
the analytical testing equation, except that the partial derivatives of in-plane
hub motions with respect to in-plane hub forces have periodic coefficients. It
is not analytically difficult to handle this problem, and therefore remove this
particular Timitation, but the practicality of doing so has not been estab-
lished. The effect on change estimates of airframe mobilities without a
rotating rotor in a vacuum is discussed in Appendix B.

The basic analytical testing equation is of the form
{q'} = {q} - [A] {r} (13)

where q is the vector of complex motions (vibrations or strains) on the air-
frame measured in flight without a structural change, r is the vector of com-
plex motions measured in flight at the coordinates of the structural change,

q' is the vector of complex flight motions that result from the change and A is

11



a matrix function of measured airframe mobilities and mobilities of the struc-
tural change. If the structural change has negligible effect on the structural
dynamics of the helicopter, the A matrix is neér]y null and Ar is negligible;
resulting flight vibrations and strains are virtually unchanged. If, on the
other hand, the structural change has a significant effect on the dynamics such
that the absolute values of the Ar terms are much greater than the absolute
values of the g terms, then the change will make the flight vibrations and
strains much higher. It is seen, therefore, that analytical testing is least
sensitive to errors in mobilities or modeling of the structural change when:
(1) the structural change has negligible effect on flight vibrations and strains;
and (2) the structural change results in much higher flight vibrations and

strains.

The practical consequence is that one does not need high precision mobili-
ties or change modeling to filter out quite rapidly those structural changes
which either do not significantly change flight vibrations or strains or those
structural changes which will significantly worsen flight vibrations or strains.
Since most changes contemplated in the Tife cycle of a military helicopter are
for mission improvement, not dynamics or stress improvement, there is an
obvious value in using approximate but not precise structural dynamics data to
identify those changes which are 1ikely to create serious flight structural
problems before proceeding with flight testing the changes or with more expen-

sive and more precise measures of analysis and test.
APPLICATIONS OF ANALYTICAL TESTING

The following numerical illustrations of the analytical testing methodol-
ogy utilize ground and flight vibration data obtained from an Army AH-1G test
vehicle. The types of dynamic changes which are considered include mass, stiff-
ness, absorber, and active suppressors. Except for the mass change example,
the analytical testing illustrations are hypothetical. In addition, these
results do not suggest applicability to the AH-1G or any specific helicopter.

12
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Test Vehicle and Test Conditions
The AH-1G is an armed helicopter that is configured with two-bladed, tee-

tering main and tail rotors. Armaments include nose mounted and wing mounted
weapons. A plan side view of the AH-1G is shown below.
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Mass Changes

Any change of a structural nature in a helicopter can be described in terms
of its attachment point mobilities which include the effects of stiffness, mass,
and damping of the change. However, the most common changes can be described
essentially as mass changes. Among these are external stores added to or taken
from the aircraft as exemplified by rocket pods, bombs, missiles, guns, and
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external fuel. There is often an extremely large number of possible combina-
tions of external stores on helicopters because of the variety of missions.
Cargo and transport helicopters have many variations in payload of a mass
change nature. There are mass changes from fuel burn-off, depletion -of ammu-
nition, and firing of rockets or missiles. |

In the continuing development of a helicopter it would be expeditious to
predict the effects of flight stresses and vibration of such changes so that
problem areas can be anticipated, engineering judgments can be made, and cor-
rective action prepared with minimum trial-and-error testing. Allowing for
flight data scatter, the engineer would make such predictions at several criti-
cal Tocations with analytical testing for critical classes of maneuvers. It is
impractical to attempt precise predictions for every possible airspeed, gross
weight, c.g. location, yaw rate, pitch rate, roll rate, power setting, air tem-
perature, wind condition, altitude, etc., and for all the locations of interest
on the helicopter. In a well developed helicopter analytical testing would be
used for major changes, such as the contemplated addition of rocket pods, but
in a helicopter in the early stages of development analytical testing would be
applied to a wider variety of mass changes to aid in identifying possible

problems.

A Flight Example for Mass Changes

The AH-1G is used to illustrate the analytical testing methodology. Con-
sider the hypothetical situation of an AH-1G which had never flown with rocket
pods. An addition of rocket pods weighing 181 kg (400 1b) each to the outboard
wing station is contemplated. This represents a 9.4 percent increase in the
gross weight of the helicopter. The predictions are made from the clean con-
figuration for classes of maneuvers without accounting for additional drag,
fuel burnoff, or other causes of possible changes in external aerodynamic

loading.

The following flight acceleration data were taken on an as-available basis
from another project. No strain data were available. The clean configuration,
without rocket pods, had a take-off gross weight of 3830 kg (8465 1b) and was
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flown in ground winds of 5 to 7 knots, Outside Air Temperature (OAT) of 10°C
(50°F) and 766 mm (30.17 in.) Hg barometric pressure. The flights with the
rocket pods were made at 4106 kg (9075 1b) take-off gross weight with ground
winds of 3 to 5 knots, OAT of 20°C (68°F) and 754 mm (29.68 in.) Hg barometric
pressure. The c.g. was at FS 196.3 in both flights. Power and control settings
were not necessarily matched in the flights. Data were analyzed for the condi-
tion of highest peak-to-peak vibration of a set of selected points, differing
from flight to flight, in each class of flight condition with a harmonic anal-
ysis over five to eight rotor revolutions. Except for the unavailability of
strains, this situation is representative of practical application of analy-

tical testing.

The mobilities of the left and right wing stores positions for vertical
motion constitute a 2 x 2 complex matrix. These are at Butt Lines +60 and are
identified as Z200L and Z200R.

g .054/-8° .012/14°
[Yr‘r] - T000 W (14)
.012/14° .040/8°

Analytical testing predictions were made for nine motion coordinates shown in
the sketch below.
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The matrix of mobilities for these nine coordinates relative to forcing at Z200L

and Z200R is as follows:

£200L Z200R
2200 .033/-4° .052/9°
Z90L .017/22° .024/-140°
2140L .046/5° .018/-176°
Z396R .046/-19° .068/11°
[&jr} = Z400 .100/-49° .049/-97° ]080 N (15)
Y380 .193/144° .208/-48°
Y440 .091/-167° .086/8°
Y490 .065/77° .084/-96°
Y517 .168/130° .151/-53°

The vibration, in g units, resulting from the change is obtained from equa-
tion (11)

5 [Tl | {6 (9

where G is the gravitational acceleration. The effects of this mass change,
using equation (16), on 2P(10.8 Hz) vibrations are summarized in the following

discussions.

Level flights. - The effect of the pods at .5VH, shown in Table I, is
small. The aft tail lateral accelerations, which are sensitive to main rotor
2P forces on the vertical fin, are higher than predicted but still low. At VH
the pods result in lower vertical vibration, as shown in Table II, but the
change is not very great. The lateral vibration at FS Y380 was predicted to
increase and showed a greater increase in the pod flight. The decrease in
vibration at FS Y490 and FS Y517 was significantly greater than predicted.
Whether the difference is due to inaccuracy of the method, the 181 kg (400 1b)
weight difference, or the 8 knot air speed difference 'is not known but the gen-
eral conclusions from the prediction are reflected in the flight with the pods.
Gross weight difference results from fuel burnoff.
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TABLE I.

| 3840 kg (8465 1b)
gross weight |

AT .5 VH’

Flight of clean
configuration

70 k

.10/0°
.03/83°
.04/33°
.25/-21°
.22/-19°

.07/262°
.14/233°
.18/22°
.29/201°

g

- 2P VIBRATION IN STRAIGHT AND LEVEL FLIGHT

Predicted for
flight with pods

Flight with pods

4203 kg (9265 1b)
gross weight

4035 kg (8895 1b)
gross weight

e e e i e e

.29/151°

nots 67 knots

.09/0° 11/14°
.02/73° .03/100°
.03/24° .03/43°
.23/-22° .21/-9°
.21/-16° .20/-8°
.12/85° ~10/119°
.16/126° .21/137°
.17/133° .26/148°

.37/167°

TABLE II. - 2P VIBRATION IN STRAIGHT AND LEVEL FLIGHT

AT VH’ g
Flight of clean Predicted for Flight with pods
configuration flight with pods
3840 kg (8465 1b) | 4203 kg (9265 1b) | 4017 kg (8855 1b)
gross weight gross weight gross weight
144 knots 136 knots
2200 .20/73° .18/73° .15/85°
Z90L .20/133° .18/129° .18/125°
Z140L .18/114° .15/109° .16/104°
Z396R .31/48° .27/48° .22/48°
2400 .34/44° .32/45° .31/46°
Y380 .19/206° .25/156° 31/177°
Y440 .61/-145° .66/-152° .64/-167°
Y490 .88/-150° .82/-152° .50/-148°
Y517 1.66/-138° 1.57/-142° 1.15/-144°
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Gunnery runs. - The data for the flight of the clean aircraft were not
necessarily taken for a portion of the ro]]ing'pu110ut comparable to that for
which those data were taken on the flight with the pods. From the prediction
of the effects of the pods, shown in Table I1I, the pods have little effect on
the vibration at some locations and cause a decrease in the vibration at others
in a high load factor rolling pullout to the left. The pod flight data leads
to the same conclusion. The same situation pertains in a rolling pullout to
the right, shown in Table IV. In this case the predictions for FS Z396R and
FS Y517 showed reductions that were not seen in the pod flight as did the pre-
diction for FS Y380 in Tabie III. However, considering the nature of the data
samples, the conclusion of the prediction is reflected in the pod flight.

Sideward flight and landing. - The flight data in Table V are sampies
taken from sideward flight to the right to 35 knots with reversal and sideward
flight to the left to 35 knots. There is no significant change in vibration
due to the pods in sideward flight or in approach and landing. The phase angles
of the data at very low g-levels, determined from harmonic analysis, are highly
variable. In approach and landing with pods, Table VI, the data sample shows
Tow vibration at FS 490 and FS 517, fin stations of large vibration scatter,
and is most likely the result of the time sample chosen.
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TABLE III. - 2P VIBRATION IN ROLLING PULLOUT TO LEFT, g

—
Flight of clean
configuration

Predicted for
flight with pods

Flight with pods

3645 kg (8035 1b)
gross weight

4130 kg (9105 1b)
gross weight

3966 kg (8744 1b)
gross weight

187 k
1.42 g 1o

nots
ad factor

186 knots
1.52 g Toad factor

2200
Z90L
2140L
Z396R
400
Y380
Y440
Y490
Y517

.53/85°
.46/118°
.47/105°
.52/73°
.94/68°
.50/-126°
1.28/-115°
1.27/-116°

.52/89°
L42/117°
.42/103°
.42/75°
.83/70°
.32/-158°
1.25/-120°
1.19/-114°

1.82/-91°

1.60/-89°

.58/84°
.42/116°
.40/104°
.54/76°
.79/66°
.52/-157°
1.04/-1471°
.93/-121°
1.59/-92°

TABLE IV. - 2P VIBRATION IN ROLLING PULLOUT TO RIGHT, g

—
Flight of clean
configuration

Predicted for
flight with pods

Flight with pods

3792 kg (8361 1b)
gross weight

4155 kg (9161 1b)
gross weight

4042 kg (8909 1b)
gross weight

164 to 128 knots 162 knots
1.78 to 1.5 g load factor 1.23 g Toad factor

2200 .36/84° .32/85° .24/79°
Z90L .49/129° .44/128° L31/117°
Z140L .43/115° .37/113° .31/106°
Z396R .33/565° .26/56° A7/71°
Z400 .82/61° .72/61° .63/60°
Y380 .47/-121° .24/193° .24/7-167°
Y440 .97/-114° .94/-123° .79/-1568°
Y490 J71/7-121° .61/-116° .47/-144°
Y517 .85/-106° .58/-107° .85/-123°
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TABLE V. - 2P VIBRATION IN SIDEWARD FLIGHT, g

Flight of clean
configuration

Predicted for
flight with pods

Flight with pods

3688 kg (8130 1b)
gross weight

4051 kg (8930 1b)
gross weight

3980 kg (8774 1b)
gross weight

35 knots right to 35 knots Teft

7200 .23/142° .20/143° .25/130°
Z90L .11/145° .10/147° .12/138°
Z140L .13/144° .12/144° .12/138°
Z396R .26/137° .22/136° .18/131°
2400 .25/132° .22/140° .23/125°
Y380 .03/-46° .01/-31° .02/-52°
Y440 .08/-43° .06/-47° .08/-82°
Y490 .03/54° .03/47° .04/104°
Y517 .02/45° .04/73° .01/-142°
TABLE VI. 2P VIBRATION IN APPROACH AND LANDING, g
Flight of clean Predicted for Flight with pods
configuration flight with pods
3613 kg (7966 1b) | 3976 kg (8766 1b) | 4002 kg (8824 1b)

gross weight gross weight gross weight
7200 .14/-13° .13/-13° J14/-21°
Z90L .10/31° .09/29° .07/24¢°
Z7140L 11/12° .10/9° .08/2°
Z396R .24/-47° .22/-49° .20/-38°
2400 .27/-24° .25/-20° .25/-28°
Y380 .10/126° .10/82° .08/111°
Y440 .18/140° .19/1371° 15/7-121°
Y490 .15/137° .13/136° .01/174°
Y517 .24/-40° .29/-33° .05/-161°




Vibration Absorber Changes

A11 major helicopter manufacturers have used conventional spring-mass
vibration absorbers with varying degrees of success. Except for in-plane cen-
trifugal hub absorbers which are used to cancel (N-1)P and (N+1)P shears in the
rotating system of helicopters, absorbers are customarily tuned to be coinci—.
dent with the excitation frequency and placed at the airframe location where
vibration reduction is needed. In Timited applications, airframe absorbers
have been remotely placed from points where low vibration is desired. The
remote absorber has the advantage of providing vibration reduction at locations
where conventional airframe absorbers are physically impractical. These remote
absorbers have been trial-and-error tuned to be somewhat off resonance to
achieve optimum vibration reduction.

Airspeed, gross weight, and center of gravity variations alter the rela-
tive magnitudes and phasings of airframe responses, thus absorber effectiveness
varies. There are two situations in which the effects of absorbers are indepen-
dent of the airspeed and flight maneuver of the helicopter. First, is the
extreme situation with absorbers coincident to each vectorial coordinate of
external forces and moments acting on the helicopter. In this case, the entire
airframe has virtually zero vibration at all airspeeds and in all maneuvers.

The second situation is at the attachment point of the absorbers along the
absorber direction. Clearly, the dynamicist must consider the flight effects
of a Timited number of absorbers at airframe locations remote from the

absorbers.

For single-point or discrete impedance changes, equations (11) and (12)
reduce to simple scalar algebra equations for estimating the effects on vibra-
tions or strains. The vibration absorber analytical testing equations become

for acceleration, after simplifying equation (11),

:
G = gy - =TT (17)
IS+

rr rr
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and, for strain, after simplifying equation (12)

(&)

A T

j j . c ..
Yrr + Yrr

(18)

where Vrg is the unrestrained driving-point acceleration mobility of the absor-
ber at its attachment point r. For a structurally damped absorber, the unre-
strained driving-point acceleration mobility is

1 - w?/ek + g
m{1+ig)

v
Yrr - (19)
where 2r is the tuning frequency, m is the absorber mass, and g is the non-
dimensional structural damping coefficient. Similarly, with viscous damping

2,2 .
ico. 1 - w /QT + 12§w/QT

re m{T+12zw/0) (20)

where ¢ is the viscous damping factor. As equations (17) and (18) show, the
required absorber weight, tuning frequency (not necessarily equal to the excita-
tion frequency), and damping (not necessarily zero) for minimum vibration or
strain along the motion coordinate j are functions of the flight vibration at r,
the flight vibration or strain at j, the r-j mobility, and the r-r mobility. A
vibration absorber can be designed to minimize both vibrations and strains. For
vibratory strains the required r-j mobility is defined as the strain mobility.

Vibration attenuation is a fundamental objective in dynamics and equa-
tion (17) can be written in a slightly different form as

o V.. §./d.
qt/q, = 1.0 - A3 (21)

3793 = C m
YPT * Yrr

The effects of tuning and damping on vibration at j can be examined by plotting
the absolute value of (dj/dj) versus the tuning ratio, QT/w, for fixed values
of damping. Interactive computer graphics offer the capability to investigate
the effects at various critical airframe locations to select the tuning fre-
guency for the optimum overall effect. A weighting factor can be assigned to
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|q'/q| for each station and one composite curve can be displayed for many
stations.

Conventional absorbers are analyzed with regard to vibration at the absor-
ber attachment point r. If j replaces r in equation (21), then the absorber
transmissibility becomes

e
BRI Y‘Y‘
qr/qr S (22)
Yrr * Yrr
or, after substituting for Vﬁr in equation (19),
Lo 1 - wZ/Q-?- + 1ig
I/ - 2 R I 1 R (23)
w . . e .
1 - g§-+ Yrrm - Yrrmg + i Yrrm + ngrr + g
T

The percentage reduction of vibration at the absorber attachment point is, of
course, independent of the flight vibration. A conventional absorber with zero
damping produces zero vibration when Vﬁr is zero or when the tuning frequency
coincides with the excitation frequency. When the forcing freguency equals the

tuning frequency, equation (23) gives

i g 7 i
qr/qr m ..R ..I . ..I --R (24)
Yer - Yep 9+ 1 Yep v 9 Yer

+ 9
m
Thus, for a given absorber damping the attachment point vibration ratio is

inversely proportional to the absorber mass.

The imaginary part of the helicopter driving-point acceleration mobilities
is necessarily positive, but the real part may be either positive or negative.
Because helicopter structures do not have proportional damping the modes are,
in general, complex and, even in the vicinity of a well separated mode with a
high rr modal acceleration (residue), the real part of the driving-point mobil-
ity is not necessarily smaller just below resonance than just above a resonance
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as in structures with classical modes. For structures with classical modes,
the signs of the real parts of the driving-point mobilities may be the same
just above and just below a resonance, due to coupling of other modes, and
that sign may be positive or negative. Therefore, the resonance introduced
by the addition of the absorber may occur above or below the driving-point
antiresonant frequency created by the absorber. Because the driving-point
mobility is a function of frequency it is necessary to examine equation (22)
over a frequency spectrum to determine the absorber bandwidth, that is, the
change in resultant vibration with variation in excitation frequency or rotor
speed.

As seen from equation (24), the vibration ratio at the attachment point
is, for small damping, directly proportional to the damping. This leads to the
misconception that minimal absorber damping is desirable regardless of the loca-
tion of the absorber and the point of concern on the helicopter.

Obtaining zero vibration. - In equation (21) let 53 be zero. Then,
. N
c _ r
Yer = Y5r o Yor (25)
%

The absorber mobility required for zero vibration along the j motion coordinate
is a function of the in-flight vibration of the motion coordinate j and that of
the absorber, r. The complex dr/aj ratio will usually be different for each
flight condition and zero vibration at j from an absorber at r is dependent on
the flight condition. Since the driving-point imaginary acceleration mobility
must be positive, it is necessary but not sufficient for the imaginary part of
the right hand side of equation (25) to be positive for zero vibration.

Through control of absorber damping zero vibration at a desired point can be
achieved in any one flight condition only under certain circumstances.
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Examples of Absorber Analysis

The following examples are presented to illustrate the applicability of
analytical testing for examining the effects of absorbers on AH-1G airframe
vibrations. The absorber is a simple spring-mass device with hysteretic damping
as discussed for equation (19). Equations (21) and (22) are used to determine
the performance of the absorber at critical points on the airframe for several
representative flight conditions.

Absorber at nose. - This example considers the effects on vertical vibra-
tion at the gunner's left (FS Z90L) and at the horizontal stabilizer (FS Z400).
A vertical absorber, weighing 13.61 kg (30 1b), is located at the nose (FS Z50)
of the AH-1G as shown in the sketch below.

The acceleration mobilities which were measured during the ground vibra-
tion test are

Y (250, 750) .100 ¢g/1000 N (.044 g/100 1b)/10°
Y (Z90, Z50)¢ = 1.09 g/1000 N (.040 g/100 1b)/8° : (26)
Y (Z400,250) .232 g/1000 N (.103 g/100 1b)/123°
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The vibrations measured in flight are shown in Table VII. The driving-
point mobility at FS Z50 is nearly the same as the transfer mobility between
250 and Z90L and the flight vibrations of these coordinates are only slightly
different in magnitude, but significantly different in phase. The effect of
the nose absorber on gunner vibration will not be the same as the effect of an
absorber directly at the gunner station.

TABLE VII. - VERTICAL 2P (10.8 Hz) VIBRATIONS, g

750 Z90 Z400
Nose Gunner's left Horizontal
stabilizer

187 kts rolling .426/150° .464/118° .938/68°
pullout teft

164 kts rolling .533/156° .494/129° .818/61°
pullout right

144 kts .215/168° .201/133° .344/44°
103 kts 45° .121/162° .131/116° .237/92°
turn

Sideward flight .106/152° .113/145° .249/132°

R &L to 35 kts

Approach and Tanding | .095/-69° .100/-31° .271/-24°

Figure 1 shows the variation in vertical vibration at the gunner's Teft
with variation in the tuning and damping of the nose absorber. The abscissa
scale is not the same as an RPM sweep because the mobilities and the vibrations
would change in an RPM sweep. It is impractical to do an RPM sweep in every
maneuver. However, sensitivity to changes in the tuning frequency are indica-
tive of bandwidth.

In most plots of Figure 1, a change in the absorber tuning of less than 1%
causes a significant change in gunner's seat vibration, indicating an imprac-
tically narrow bandwidth. Note that 2% structural damping, not zero damping,
in the absorber gives minimum gunner vibration at 144 knots and in a 103-knot
turn, but in other maneuvers zero damping gives the minimum. In the rolling
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A7

0

(a) 187 knots rolling

pullout left.

Vibration with absorber
Vibration without absorber

~—2%

(c) 144 knots straight

and level.

5%
T\ /
2%
0%

.9 1.0 1.1

.201

g's

(b) 164 knots rolling
pullout right.

= 131
2%

(d) 103 knots 45° turn.

5%

t// .100

g's

.9 1.0 1.1

Tuned frequency/forcing frequency
(e) Sideward flight to

35 knots.

(f) Approach and landing.

Figure 1. - Effect on gunner vertical (FS Z90) vibration of 13.61 kg

(30 1bs) vertical absorber at nose (FS Z50) for 0%, 2%,
and 5% absorber structural damping.
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pullouts 2% damping reduces the peak of mistuning more than it raises the depth
of the valley. The tuning ratio for minimum vibration is very close to 1.0 and
for gunner's seat attenuation the absorber is tuned to 2P or 10.8 Hz.

The effect of the nose absorber on the vertical vibration at the hori-
zontal stabilizer (FS Z400) is shown in Figure 2. The absorber frequency for
minimum vibration shifts somewhat with maneuvers but is generally lower than 2P.
Figure 2 also indicates that tuning the nose absorber to 2P (10.8 Hz) to mini-
mize gunner vibration will increase the horizontal stabilizer vibration by a
substantial amount in most flight conditions. The converse is true if the nose
absorber is tuned to minimize horizontal stabilizer vertical vibration.

There is also a significant change in vibration between zero and 2% damping.
The extreme sensitivity of vibration at the gunner's station and the horizontal
stabilizer station to absorber tuning and absorber damping suggests that an
absorber at the nose would have to weigh much more than 13.61 kg (30 1b) to be
useful.

Absorber at the tail rotor. - The principal concern in this example is
minimization of the Tateral vibration at FS Y490, where the vertical stabil-
jzer joins the tail boom. A lateral absorber, weighing 13.61 kg (30 1b), is
located at the tail rotor gearbox as shown in the sketch on page 30.
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(e) Sideward flight to (f) Approach and landing.
35 knots.

Figure 2. - Effect on stabilizer vertical (FS Z400) vibration of 13.61 kg
(30 1b) vertical absorber at nose (FS Z50) for 0%, 2%, and
5% absorber structural damping.
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The pertinent acceleration mobilities are

Y(Y517,Y517) 3.597 g/1000 N (1.583 g/100 1b)/17°
Y(Y490,Y517)F = {1.576 g/1000 N (.693 g/100 1b)/20° (27)
Y(Y440,Y517) .535 g/1000 N (.235 g/100 1b)/2°

and 'the flight accelerations are given in Table VIII.

The Tlateral response at the absorber attachment point, for 2% absorber
damping is shown in Figure 3. Comparison of Figure 3 to Figures 1 and 2 (note
abscissa scale change) shows that the tail rotor gearbox absorber is much less
sensitive to the freguency ratio, indicating a broader bandwidth than the nose
absorber. The high lateral driving-point mobility at the tail rotor gearbox
explains this improvement. As seen from equation (22), the flight accelera-
tions cancel at the absorber attachment point and Figure 3 is, therefore, the
same for all flight conditions.
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TABLE VIII. - LATERAL 2P (10.8 Hz) VIBRATIONS, g

Vibratijon with absorber

0
.5 1.0 1.5
Tuned frequency
Forcing frequency
Figure 3. - Lateral response at the tail rotor gearbox

Vibration without absorber

~Ny

=

—

—

(FS Y517) for 2% structural damping.

Y517 Y490 Y440
187 kts rolling 1.815/-91° 1.266/-116° 1.282/-115°
pullout left
164 kts rolling .851/-106° .710/-121° .967/-114°
pullout right
144 kts 1.797/-133° .878/-150° .611/-145°
103 kts 45° .405/171° .233/175° .118/-170°
turn
Sideward flight .017/-45° .031/-54° .075/-43°
R &L to 35 kts
Approach and 1and1‘rEJ .238/-40° .150/137° .184/140°
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Comparing Figure 4 with Figures 1 and 2 shows that the tail rotor absorber
effects on fin lateral vibration are much less sensitive to tuning and absorber
damping than the nose absorber effects on vertical vibration at the gunner's
station and stabilizer station. Although the variations in minimum vibration
with damping are small in Figure 4, the minimum is lowest with zero damping,
except in the 187-knot rolling pullout where 5% structural damping gives the
Towest vibration. The absorber tuning frequency for the minimum vibration
varies somewhat with flight condition but is near 90% of 2P in most cases. In
this example a tuning frequency of about 9.7 Hz appears to be the best compro-
mise. Such a selection, as seen from Figure 4, would result in much higher fin
vibration in approach and landing. Referring to Figure 3, a tuning frequency
of about 9.7 Hz gives almost the same vibration at the absorber attachment
point. Figure 5 shows the vibration at FS Y440 for variation in tuning of the
absorber with 2% absorber structural damping. The 9.7 Hz tuning frequency would
have a minor effect at this location in most flight conditions.

The engineer must be cautious of the effects of RPM changes and as a first
approximation the engineer, assuming the vibrations to remain constant with RPM
change given no RPM sweep flight data, would utilize the mobility spectrum data
to create plots similar to those of Figure 4 with an inverted abscissa param-
eter: 1i.e., variation in forcing frequency for the tuning frequency selected.
This would be done on the interactive computer for all locations and directions
of importance over the RPM range allowable in flight.
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Figure 4. - Effect on fin lateral (FS Y490) of 13.61 kg (30 1b) lateral
absorber at tail rotor for 0%, 2%, and 5% absorber structural

damping.

.878
g's

.031
g's

0 1.5

0%
2%
5%

| 0%.2%

| —

5%

pull

out

(b) 164 knots rolling

right.

\
1 |

/

220y

e

5%

(d) 103 knots 45° turn.

\

S~

s

5%
2%
0%

.5

1.

¢ 1.5

Tuned frequency/forcing frequency
(f) Approach and landing.

flight to

.233

g's

33



34

Vibration with absorber

Vibration without absorber

="\ 1.282 [\ .967
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35 knots.

Figure 5. - Effect on boom lateral (FS Y440) of 13.61 kg (30 1b) lateral

absorber at tail rotor for 2% absorber structural damping.
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Active Vibration Suppression

Vibration suppression and vibration isolation are distinguished by con-
sidering suppression to imply something other than separating (isolating) the
externally excited structure. Active vibration suppression devices may be
applied without consideration of the physical locations of the external exciting
forces and moments. In this report the term active is used in the customary
sense to indicate a powered device which creates an external force with magni-
tude and phase controlled by reference to a feedback signal of vibration or
strain. The vibration or strain to be controlled will generally not be at the
lTocation of the active vibration suppressor.

Active vibration suppression with time-domain control has been highly
effective in some applications at frequencies far below the lowest blade passage
frequency in helicopters and continuing work in this specialized area may even-
tually be important at helicopter frequencies, but such matters are beyond the
scope of this report. Frequency-domain control of active vibration suppressors,
perhaps by minicomputers, is not as frequency limited as time-domain control
and is close to the state-of-the-art of shaking hardware. For these reasons,
frequency-domain control is implied in the considerations in this report. It
is to be understood in the discussions following that any active vibration
suppressor can, by the methods described for a given frequency, be simultan-
eously applied to other frequencies which are not necessarily limited to har-

monics of main rotor blade passage frequency.

Minimizing the norm of a set of flight accelerations or strains. - Active

vibration suppressors, R in number, can be used to minimize the sum of the
squares of K, greater than R, accelerations or strains. Let the fr complex
vector be that of the forces or moments applied by the R active vibration sup-
pressors and the primed quantities be the resulting complex accelerations and

strains. The matrix equation which defines this situation is

3 ;
a | _ ] % lar {fr} (28)
8; Es Yg:;:-)

K x 1 K x 1 K x R R x 1
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or, more concisely,

{q‘;} i {qk} ¥ [Ykr} {fr‘} | (29)

Kx1 Kx1 KxR Rx1

The sum of the squares (Euclidian norm) becomes

o Mot = {a ™ o + o™ o] )
¥ {fr}*T [Ykr}*T [Ykr] {fr} + {fr}*T [Ykr}*T {qk} (30)

where * denotes the complex conjugate.

The left hand side of equation (30) is, of course, a real scalar and the
minimum sum of the squares is obtained by setting the partial derivative of this
complex scalar function with respect to the complex transpose of the fr vector

to zero.

W ool BBl o

N

The complex forces from the R active vibration suppressors necessary to mini-
mize the sum of the squares (the Euclidian norm or sum of the squares of the
absolute values) of the K (greater than R) vibrations or strains in any flight
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If R were equal to K, then all K accelerations and strains would be zero.
In this case it is necessary to examine the vibration or strain of each impor-
tant motion coordinate which is not of the set of K = R because some of those
of the nonnulled set could have been made much worse. When K is greater than
R, it is necessary to check every significant motion coordinate, including
those of the minimized set, because a reduction in the sum of the squares of
the minimized set does not guarantee that some motion coordinates in the mini-
mized set are not amplified beyond tolerable values. The changed vibratjon is

determined from

- (m)
o =95+ ' {0}
Ix1 1x1  1xR  Rxl (34)

Some Types of Active Vibration Suppressors

The following types of active vibration suppressors are discussed to illus-
trate the application of analytical testing to active vibration suppression.
The 1ist is not intended to be all inclusive and only a cursory examination of

the practicality of the devices is presented.

Active mass. - The shaking of a reaction mass by an actuator attached to
the airframe creates an external force on the airframe as shown below. The
response, acceleration or strain, to be controlled will usually be remote from
the active mass and may be in any spatial direction. The feedback to the
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7 /

v

{
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OR STRAIN GAGE

POWER
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controller from the shaker may be both force magnitude and phase. To obtain
the desired force level on the airframe with minimum reaction mass weight
requires the reaction mass to move through a large displacement.

Active stiffness. - A shaker or actuator may be placed between two points

on the structure as shown in the following sketch.

ACCELEROMETER

OR STRAIN
GAGE

SHAKER OR ACTUATOR
+ —f —>»+
4 P
et
Yixi—™>* 7 l i ¥ix2
S

POWER
SOURCE | CONTROLLER

The response at j is given by

) f (35)

J ijZ - ij] X
where x1 and x2 must be colinear. Feedback from the shaker may be both force

magnitude and force phase.

Control surface suppressor. - An aerodynamic surface, such as a canard or
horizontal stabilizer, can be vibrated as shown in the following sketch to

create an external force. Considering the control surface to be essentially
rigid, one may obtain phase feedback. However, the actual external vibratory
force produced may not be known accurately unless the suppressor can be test
calibrated with a suitably placed strain gage or bending bridge because of the
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difficulties in calculation of the force from unsteady aerodynamics and aero-

ACCELEROMETER‘f;;bTTTTOR
{F 71" STRAIN GAGE
SHAKER <:::§;:::::::::’
Z -

dynamic interferences.

4 1= o

\

CONTROLLER <t

b

POWER
SOURCE

A disadvantage of using a fixed-system control surface as a vibration sup-
pressor is airspeed dependence because the maximum force required may not be at
the highest airspeed.

Rotor control suppression. - Varjation in rotor pitch is another possible
method of active vibration control. A schematic for vibratory tail rotor pitch

is shown below.

ACCELEROMETER
OR STRAIN
GAGE

NTROLLE
o R 10 QUADRANT OF

TAIL ROTOR
CONTROL

FROM RUDDER PEDALS

In some types of tail rotor installations the vibratory force magnitude
and phase may be obtained from strain gages on the tail rotor shaft.
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-Active absorber. ~ The active absorber can be used to suppress vibration

at a particular frequency. The major advantage of an active absorber is the
reduction of the shaker size required for a given output force. Figure 6
depicts a conventional absorber with damping. The active absorber is simply
a spring in parallel with the shaker, as shown in Figure 7.

MASS

SPRING 1 DAMPER IV SHAKER
Figure 6. - Conventional Figure 7. - Active absorber.
absorber with damping. Damping may be zero.

The displacements of the absorber mass and the fuselage are obtained from
q - Yaa Yar 0
Yra Yrr fr

[e1)

(36)
q

= -

where the elements of the matrix in equation (36) are displacement mobilities
with the absorber on the fuselage. Substituting for the absorber parameters
leads to the result

1

Yia Yar 1 K(1+ig) + ¥ K(1+1g) (37)
vyt k() K(1+ig) - wm
where
s = KO+igh(v 2 - Wm) - WP YT (38)

and Yrr is the driving-point mobility without the absorber. The spring stiff-
ness, spring structural damping, and absorber mass are K, g, and m, respectively.
The motion of the absorber mass is obtained from equation (36) and, after elim-
inating fr’ becomes
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.. Yar 9y
Y% Y (39)

For a shaker force f on the absorber mass and -f on the fuselage, equatjon (28)
determines the displacement of the absorber mass as

v _ar [
99 Ty 9 * [Yaa Yar] f (40)

and the displacement of the fuselage as

q.' = a, - [Y;,r - Yol f (41)
then
Yar
qa - qr = V;;'- 1 qr + Yaa + YPP -2 Yar f (42)

Substituting for the driving-point displacement mobility of the absorber, equa-
tion (22) leads to the result

- [K(]+1g) - wzm] (43)
I 7 [K(1+ig) - wzm - Yrr K(1+ig) wzm]

where 9, is the motion of the fuselage without the absorber.

Equation (42) can then be written as

] 1 mzmqr * (1 ) wzm Yrr) f
9 ~ 9 ~ . 2 2 (44)
K(1+ig) (1 - um YY‘Y‘) - wm

The force on the fuselage is

fr = K(1+ig) (a)' - qu') - f (45)
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or wzm [% + qu(l + 19)]

F o= (46)
KA+ ig)(1 - Y. wPm) - wm
rr
and in terms of acceleration
- qrm(l + ig) + g 2f
f = . T (47)
W v R VI_*_. VI+VR+.
1 ztm Yrr R A M e * 9Ty 9
Q
T
where Qr is the antiresonant frequency at r created by the absorber.
To minimize the denominator with tuning, let
2
w _ ..R ..I
—em Y - ngr] *+ (48)
7

which sets the real part of the denominator of equation (47) to zero. The
tuning of the active absorber is independent of flight vibrations at the attach-
ment point and the response point whereas the tuning of a conventional absorber
is not. With the tuning condition of equation (48), equation (47) becomes

. 2 2
gm (1 + 1ig) - f w/0
- § T (49)

- I .. R
m {Yrr * ngr] t9

£
r

From equation (48) the tuning frequency of the active absorber is

= w (50)

QT =
.. R .. I
Jr+m [Yrr - ngr}

In operation, the minicomputer controller determines the magnitude and phase

required of the shaker from

2
9 .

B T . I I ° .. 2 —.’

F= = It {m[Yrr ¥ ngr] ! g}/(¢f + 90 ] * 16 m[] "9 ]/¢r Ften g (1)
w
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The force on the fuselage at r, fr’ for zero vibration at j is determined from

fom-zt - (52)

There are two feedback,signa]é to the controller of the active absorber: the
acceleration at the attachment point and the vibration (strain or acceleration)
of the motion coordinate to be nulled.

Examples of Active Vibration Suppression

The applicability of analytical testing for examining the effects of
active vibration suppressors on airframe vibration is illustrated using AH-1G
ground and flight test vibration data. Equations (33) and (34) are used to
determine the required control forces and the changed vibrations.

Horizontal stabilizer aerodynamic suppressor. - This example considers the
effects on vertical vibration for 2P excitation of the horizontal stabilizer.
As shown in the following sketch, the horizontal stabilizer is vibrated in pitch
with sufficient force magnitude and phase to give zero vertical vibration at the
pilot's seat (FS Z140). The effects at FS 790, FS Z400, and FS Z540 are also
examined. The vertical acceleration mobilities at these four Tocations are
shown in Table IX. Table X presents the flight vertical accelerations for four

flight conditions.
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At 187 knots, the required force is

7540

£ . _ __4(z140) _ .147q's/124° (53)
r Y(Z400,2140) (.0659's/1000 N)/-84°

I

- 2261 N(-510 1b)/208°

and similarly for other flight conditions.
obtained from equation (34) as

= g, + Y.
q qJ YJr f

]
J r

and the results are shown in Table XI.
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TABLE IX. - ACCELERATION MOBILITIES AT 10.8 HZ, g/1000 N (g/TOO 1b)
Z90 2140 7400 72540
790 .103/10° .070/6° .038/-138° .288/9°
(.046) (.031) (.017) .128)
Z140 .070/6° .052/5° .065/-84° .124/25°
(.031) (.023) (.029) .055)
2400 .038/-138° .065/-84° .072/64° .672/-32°
(.017) (.029) (.320) .299)
2540 .288/9° .124/25° .672/-32° .855/-8°
(.128) (.055) (.299) (1.270)
TABLE X. - FLIGHT ACCELERATIONS AT 10.8 HZ, ¢
187 Knots 164 Knots 144 Knots 103 Knots
rolling rolling straight 45° turn
pullout pullout and level
left right
Z90 .335/120° .322/134° .118/120° .064/124°
2140 .147/124° .274/114° .114/99° .078/95°
72400 .938/68° .818/61° .344/44° .237/92°
7540 1.992/-118° 1.454/-131° .769/-131° .684/-167°

Assume that the horizontal stabilizer is vibrated in pitch with sufficient force

magnitude and phase to give zero vertical vibration at the pilot's seat, as

shown by the previous sketch.
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TABLE XI. VERTICAL VIBRATION AT 10.8 HZ WITH AND WITHOUT
. HORIZONTAL STABILIZER AERODYNAMIC SUPPRESSOR, g
187 Knots 164 Knots 144 Knots 103 Knots
rolling rolling straight 45° turn
pullout pullout and level
left right
Force at | -2255 N/208° -4204 N/198° -1748 N/183° -1197 N/179°
2400 (-507 1b) (-945 1b) (-393 1b) (-269 1b)
With  Without| With Without | With  Without | With Without
Z 90 .287 .335 .316 .322 .120 .118 .074 .064
2140 0 147 (0 .274 0 114 0 .078
7400 2.51 .938 | 3.798 .818 1.58 .344 1.074 .237
7540 1.95 1.992 | 2.523 1.454 1.263 .769 .592 .684

The pilot's seat vibration is zero in all flight conditions with a large
increase in vertical vibration at the horizontal stabilizer station on the boom.

The forces required are very large, however.

For purposes of illustration let it be assumed that the horizontal sta-
bilizer has an area of approximately 1 square meter and that trim requirements
would permit a 2P pitch vibration of + 3° maximum producing a vertical force of
1112 N (250 1b) at 187 knots airspeed. With the maximum force proportional to
the square of the airspeed, the vibrations obtainable with this arrangement are

given in Table XII.

Even with the very large forces of Table XI, zero vibration at the pilot's
seat from an active vibration suppressor at the horizontal stabilizer station
is obtained at the expense of large increases in tail boom vibration with neg-
1igible changes in gunner's seat vibration. The reduction in vibration at
the pilot's seat and gunner's seat using the horizontal stabilizer as an aero-

dynamic suppressor, as shown in Table XII, are not impressive.
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MINIMIZE PILOT'S SEAT VIBRATION

TABLE XII. - HORIZONTAL STABILIZER FORCED AT 10.8 HZ TO

187 knots 164 knots 144 knots 103 knots
‘rolling rolling straight “45° turn
pullout pullout and level T ‘
lTeft right
Force at -1112 N/208° -854 N/198° -658 N/183° -338 N/179°
FS Z400 (-250 1b) (-192 1b) (-148 1b) (-76 1b)
Vertical vibration with and
without suppression, g
With Without| With Without | With Without | With Without
290 .309 .335 .315 .322 .114 .118 .064 .064
7140 .075 .147 .218 .274 .071 114 .056 .078
7400 1.700 .938 | 1.409 .818 .802 .344 .465 .237
2540 1.821 1.992 | 1.298 1.454 .804 .769 .551 .684
T-tail aerodynamic suppressor. - The effects on vertical vibration for 2P

excitation of the T-tail, as shown below, are illustrated in this example.

2540

The principal objective is to give zero vertical vibration at the gunner's seat
(FS 290). The airframe locations and flight conditions are identical to the
previous example. The T-tail horizontal control surface is not required for
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trim and can be operated at higher 2P vibratory angles of incidence than the
horizontal stabilizer (FS Z400). Therefore, assuming a T-tail area of approxi-
mately 0.4 square meter, a vibratory force of about 1200 N (270 1b) at 164 knots
can be generated.

The results of using the T-tail aerodynamic suppressor to null the gunners'
seat vibration are shown in Table XIII. With the 164 knot presumption, the
required forces are well within the airspeed-squared requirement. The T-tail
is outside the path of the main rotor tip vortex indicating that it may not be
the source of increased external loads at main rotor 2P.

Significant vibration reductions result at the pilot's seat and tail boom
with zero vibration at the gunner's seat. Whether the increase in vibration
at the tip of the fin (FS Z540) is structurally significant and whether the
lateral offset of the T-tail force is detrimental or beneficial to fin bending
are questions that would be answered by further analsis using analytical

testing.
TABLE XIII. - VERTICAL VIBRATION AT 10.8 HZ WITH AND
WITHOUT T-TAIL AERODYNAMIC SUPPRESSOR, g
187 Knots 164 Knots 144 Knots 103 Knots
rolling rolling straight 45° turn
pullout pullout and Tevel
left right
Force at -1164 N/111° -1119 N/125° | -410 N/117° -222.4 N/115°
FS 7540 (-261.7 1b) (-251.6 1b) (-92.2 1b) (-50 1b)
With Without With Without | With Without | With Without
Z 9 0 .335 0 .322 |0 .118 |0 .064
7140 .031 147 .181 .274 .080 .114 .062 .078
7400 .226 .938 .437 .818 .197 .344 .092 .237
7540 5.000 1.992 3.975 1.454 11.740 .769 {1.295 .684
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Active absorber at the gunner's seat. - An active vertical absorber at the
gunner's seat (FS Z90) is controlled to provide zero vertical vibration at the
pilot's seat (FS Z140). The effects on vibrations were calculated at the loca-

tions shown in the sketch below for four flight conditions. The required

acceleration mobilities and flight accelerations are given in Tables IX and X,

2540 t

respectively.

The results presented in Table XIV indicate that the pilot's seat (FS Z140)
vertical vibration is zero for all flight conditions. The gunner's seat
(FS Z90) vertical vibration remains the same in the 103-knot turn but is
reduced in the other maneuvers. The horizontal stabilizer (FS Z400) vertical
vibration does not change appreciably and the fin (FS Z540) vertical vibration

is increased.

The active absorber parameters are calculated from equations (50), (51),
and (52). At 187 knots the suppressor force is -2100 N (-472 1b)/118° acting
through .335 g/120° at 10.8 Hz. The output power is the real part of the pro-
duct of force and velocity which gives 33.08 Nm/s (.044 hp) consumed in the
suppression. For a 4.536 kg (10 1b) reaction mass, the required tuning fre-
quency is 10.78 Hz and the required shaker force is 65.5 N (14.8 1b)/41.1°,
assuming 3 percent hystergetic damping in the absorber.
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TABLE XIV. - VERTICAL VIBRATION AT 10.8 HZ WITH AND WITHOUT
ACTIVE ABSORBER AT GUNNER'S STATION, g

T

187 Knots 164 Knots 144 Knots 103 Knot
rolling rolling straight 45° turn
pullout pullout and level
left right
Force at -2108 N/118° -3732 N/108°} -1637 N/93° -1121 N/89° “
FS 790 (-474 1b) (-839 1b) (-368 1b) (-252 1b)
With Without | With Without| With Without| With Qithou%kg
290 123 .335 | .132  .322 | .066  .118 | .064  .064 |
2140 .000 .147 .000 .274 ] .000 114 ¢ .000 .078
7400 .939 .938 .834 .818 | .349 .344 | 272 .237
7540 2.315  1.992 |2.151 1.454 (1.117 .769 | .781 .684
|
Active absorber at the tail rotor. - In this example the objective is to
produce zero lateral vibration on the fin (FS Y490) at 10.8 Hz. An active

lateral absorber at the tail rotor gearbox was selected as the vibration sup-
pressor, although excitation of tail rotor pitch is an alternative. The pre-
ference of harmonic control of the tail rotor or an active absorber depends on
many factors among which are tail rotor blade loads. Main rotor 2P excitation
of the tail rotor may increase or decrease tail rotor fatigue life and this
requires additional investigation. The effects on lateral flight accelerations
were calculated at the locations shown in the following sketch for four flight
The required acceleration mobilities and flight accelerations are
The flight conditions are identical

conditions.
shown in Tables XV and XVI, respectively.

to the previous exampTe.

The results shown in Table XVII indicate that the tail rotor gearbox vibra-
tion is negligibly affected in the rolling pullouts, but significantly reduced
in 144-knot level flight and in the 103-knot turn. The vibration at FS Y440 is
reduced substantially in the 187-knot left rolling pullout and at 144-knot level
flight, reduced somewhat in the 164-knot right rolling pullout, and increased in
the 103-knot turn. Changes in pilot and gunner vibration are not significant.
As expected, the fin (FS Y490) vibration is zero for all flight conditions. A

-
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Y517

Y490
Y440

TABLE XV. - ACCELERATION MOBILITIES AT 10.8 HZ RELATIVE TO
FS Y517 (TAIL ROTOR LATERAL), g/1000 N (g/100 1b)

L ... Fuselage stations
517 Y490 Y440 Y140 Y90
3.597/17° 1.576/20° .535/2° .178/103° .339/84°
(1.600) (.701) (.238) (.079) (.151)

TABLE XVI. - LATERAL FLIGHT VIBRATION, g

_Fuselage stations

Airspeed Y517 | Y40 ] Y440 Y140 Y30

187 kts | 1.815/-91° 1.266/-116° 1.282/-115° | .123/-96° .191/-94°

164 kts .851/-106° .710/-121° .967/-114° | .118/-89° .147/-83°

144 kts |1.637/-138° .878/-150° .611/-145° | .055/-114° | .103/-120°

103 kts .405/171° .233/175° .048/-95° .048/-95° .072/-105°
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TABLE XVII. - LATERAL VIBRATION AT 10.8 HZ WITH AND WITHOUT
ACTIVE ABSORBER AT TAIL ROTOR GEARBOX, g

187 Knots 164 Knots 144 Knots ]03_Knots"H h

rolling rolling straight 45° turn

pullout pullout and level

left right
Force at -803 N/-136° -450 N/-141°| -557 N/-170°} -148 N/155°
FS Y517 (-181 1b) (-101 1b) (-125 1b) (-33 1b)

With Without | With Without| With Without| With Without

Y517 1.552 1.815 .857 .851 .602 1.657 | .127 .405
Y490 0 1.266 | 0 .710 10 .878 |0 .233
Y440 .887 1.282 .755 .967 | .356 .611 .104 .048
Y140 . 140 .123 .092 .118 | .073 .065 | .022 .048
Y 90 .183 191 .068 47 1119 103 | .027 .072

comparison of the tail boom (FS Y44Q) vibration reduction given in Table XVII
to Figure 5 shows that the active absorber behaves quite differently from the
conventional absorber at stations other than that suppressed.

The active absorber parameters are calculated from equations (50), (51),
and (52). At 187 knots the suppressor force is -803 N (-181 1b)/-136° acting
through 1.815 g/-91° at 10.8 Hz which gives 172 Nm/s (.229 hp) consumed in the
suppression. For a 2.27 kg (5.0 1b) reaction mass, the required tuning fre-
quency is 10.41 Hz and the required shaker force is 38.9 N (8.76 1b)/174°,
assuming 5 percent hysteretic damping in the absorber.

Stiffness Changes

Skin and plate changes. - The basic equation for a stiffness change is
obtained by combining equations (11) and (12)

il e [ Pl [ for)

Ok | % Yer

€ €3

J

(4
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where [krr] is the stiffness matrix of the skin section as a free body, 9. is
the vector of flight displacements at the change coordinates and Yrr is the
matrix of displacement mobilities of the airframe at the change coordinates. A
skin, as opposed to a plate, has negligible transverse stiffness and the coor-
dinates, {qr}, are on the surface of the airframe. The differences among the
coordinates, qr}, are most important in a stiffness change. It would be
impractical in most cases to obtain {qr} from flight accelerometers alone
because of the small difference between large numbers. This problem, however,

is resolved using strain gages.

Figure 8 shows a skin section and the rectangular coordinates of the rele-
vant stiffness matrix. The skin may be of nonhomogeneous materials with noncon-
stant thickness, such as a two dimensionally tapered composite, with directional
modulii of elasticity or a simple metal sheet. Only the stiffness matrix needs
to be known in applying equation (55). The effects of proportional or nonpro-
portional damping may be included in equation (55) by replacing [Krr with a
complex matrix which is the sum of the real stiffness matrix and an Imaginary
damping matrix, frequency dependent for viscous damping and frequency indepen-

dent for hysteretic damping.

It is immaterial to the analytical testing approach whether the surface of
the helicopter at which the skin or plate change is to be made is flat or

curved.

For n nodes on a skin there are 2n rectangular coordinates and the stiff-
ness matrix (the matrix of the partial derivatives of force to displacement) is
a square matrix of order 2n and rank 2n - 3. For practical flight and shake
test measurements the skin section may be modeled in terms of 2n - 3 strain

coordinates as shown in Figure 9.

The displacement mobility matrix for the strain coordinates of, for example,
the skin section of Figure 9 may be determined as shown in Figure 10 where equal
and opposite forces are applied across a distance §. This type of displacement
mobility {(influence coefficient) matrix becomes '
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Figure 8. - Rectangular coordinates of a skin section with nine nodes.

Figure 9. - Strain coordinates of a skin section with nine nodes.
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Figure 10. ~ The jkth element of the strain stiffness matrix is

[Y(C)] - % (56)

aaf.,
J

which is, of course, nonsingular and may be inverted to give a stiffness matrix
-1 oAT .
(C)} , _ J

[Y = [k] = Ty (57)

where
_ 1
Af. = §'(f' - f. ])

and
A = A1 7 Gk

If, on the other hand, the conventional type 2n x 2n stiffness matrix K
is available the strain type stiffness matrix k may be found using a coordinate

transformation. Note that

.f:
[K] = [ilﬁ (58)
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A transformation matrix [T] exists such that

{aq} = [T] {q} ' (59)
(2n-3)x1  (2n-3)x2n 2nx1

where
[T] = Eg%ﬂ (60)

2n {%(R) é ® }

3 (2n-3)

Let

be the eigenvectors of K where the superscript R indicates the rigid body modes,
those of zero eigenvalues.

LK} [e] = [e] [Ad (61)

and

[61T[K] [e] = [K*]

for nonzero ejgenvalues. The inverse of K may be expressed as
: 0 T
[K]'] = [ " 'o } -\-- { N1 J (62)
[} 1
1 1
1

This matrix is singular because of the three reciprocal of zero terms in the
diagonal matrix. The 2n x 2n eigenvector matrix is necessarily nonsingular. A
coordinate transformation of equation (62) using equation (60) yields

1o)==

o
x_l
3

1 1 '
IR T
(k17! = [%%%1 = [T1] {éRE ® } 3—1;;- { ot é 9 } (1’ (63)
ks

which is a {2n-3) x (2n-3) matrix. The transformation of equation (60) applied
to a rigid body mode is necessarily zero. Therefore,
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(k1™ = [@ § T@} Q;AL?- [@ E T¢]T (64)
0 ik

The 0 x 0/0 indeterminant terms in the product are zero and equation (64) may
be written as

] = v = e ] tedend"

from which it follows that k, a nonsingular matrix of order (2n-3), is given by

i) =

(rared] T el [r3ced)
[rate] T te1"tKated (173063) (65)

i}

It is also necessary to establish the types of mobility measurements which
are practical in an actual airframe.

For forces fj+1 and fj_] only in Fiqure 9,
b = ar. o fim T ar o T T aF, T e T (66)
But, —fj_ = f, = Afj. Therefore

M _ 2%+1 2%k 2%, 2%

Afj afj+] afj_] afj+1 afj_]
N
- iZ1 [Wk+1,1 Yier,i T Yen,i Yianni 7 Ykerd fana

F ¥, U’3‘-1,1]'51

[Wk+1,i - Wk-],i] {Wj+1,i - *j-1,i]Fi (67)

It
h~=

i=1
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For forces only at j

Mk '§ BT S S S TS B 11 SO (68)
At 45 8y SJ J ok i
or, for any number of forces,
949y No(e) J(e)
[Yrr] = [EA?J = LE] i Y3 %5 % Fy (69)
Similarly,
39, N (e) -
€
38F 1.21 Yei Yrit S (70)

—

) . -1
dy a, 3, /oF 3Aq
. S ) G B S 4 F1] + [k e k { 8 } 71
IE, = e ; [ rr] TN [ rr] €y °r (71)
J J anf

In the case of a plate, there is transverse stiffness and nonnegligible
mass. The aircraft is tested with n accelerometers perpendicular to the sur-
face, for n attachment points, in addition to the strain gages, as shown in

Figure 17.

Numerical example of a transformation to a strain stiffness. - The six
pinned rods of Figure 12 provide a simple illustration of the transformation
from a stiffness matrix with rectangular coordinates to one with strain coordi-

nates.

In the stiffness matrix with rectangular coordinates, shown following
Figures 11 and 12, the k terms are axial spring rates subscripted with the ter-

minal positions of the rods.
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Figure 11. - A plate change with nine attachment points.

=

Figure 12. - Simple bar truss with rectangular coordinates.



k12+k]3coszu ’“12 -k]3cnszu 0 k]3c05usina 0
-k k C052u+k 0 -k cosza 0 ~K,,C08asina
12 24 12 24 24
-k coszu 0 kaatk c052u -k -k, .Sinacosa 0
13 3347113 34 13
0 -k cosza -k k coszu+k 0 k,,5inacosa
24 34 24 34 24
[K] = )
k]3sinac05a 0 -klasinucosa 0 k]4+k‘3sin a 0
0 ~kpgStnacosa 0 kpgsinacosa 0 kpgtkpasinta
-k]3sinac05a 0 k|3sinac05u 0 -klasinza -k23
0 KpqsTna 0 ~kyqsinacosa Gy kpgsin‘a
3] x2 X3 Xy l, z2

-klasinaCOSu
]
k]3sinuc05u
0
;2
-k]351n a
k23
k23+k]3sinzu

0

Z3

k24sinac05u
0
-k24sinuc05a
k4
-k245in20
0

kygtkggsinta

)

This matrix has a degeneracy of three since the null vector is equal to the

product of the K matrix and the transpose of the following independent vectors:

[} 1 1 1 0 0 0
representing x translation,
[F) 0 0 0 1 1 1

representing z translation and

[Q 0

representing a rotation.

-sina -sino 0 coSa coSa
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or

The coordinate transformation equation in this case is

{aq} =

Let the spring rates, force/deflection, in Figure 12 be

—

1 -1 0 0 0 0 0 0
0 0 -1 1 0 0 0 0
0 0 0 0 1 0 0 -1
0 0 0 0 0 1 -1 0
cosa 0 =-cosa O sina 0 -sina O

[T] {q}

- - )
k12 = k34 =3 x 10

- - 5
k]4 = k23 =2x 10

= - 5
k13 = k24 =5 x 10

The stiffness matrix, K, in the X and Z coordinates is

700000
-300000
-400000

0
200000
0
-200000
0

~300000 -400000 0 200000 0 -200000
700000 0 -400000 0 -200000 0
0 700000 -300000 ~200000 0 200000
-400000 -300000 700000 0 200000 0
0 -200000 0 300000 0 ~-100000
-200000 0 200000 0 300000 -200000
0 200000 0 -100000 -200000 300000
200000 0 -200000 -200000 -100000 0

0
200000
0
-200000
-200000
-100000
0

30000?J
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The transformation matrix is

i
0
[11 = |o
0

894427

o O O o

0
-.894427

0
0
0

0 0 0 0
0 0 0 0
1 0 0 -1 (75)
0 1 -1 0
847214 0 -.447214 O]

The eigenvectors of nonzero eigenvalues of K are

(o] =

-1 -1 1
1 -1 -1
1 1 1

-1 1 -1
1-v2 -1/2 0
1-/2 1/2 0

V2-1 1/2 0

/2-1 -1/2 0

(76)

The eigenvectors of K are orthogonal because K is symmetrical. The strain
stiffness matrix, k, which is the matrix of aAqk/aAfj, is found using equa-

tion (65).

(k] =

[ 675781.2
375781.2
187890.6
187890.6
-419262.7

375781.2
675781.3
187890.6
187890.6
-419262.7

187890.6
187390.6
293945.3
293945.3
-209631.4

187890.6  -419262.7]
187890.6  -419262.7
293945.3  -209631.4 (77)
293945.3  -209631.4
-209631.4 1E+06

The inverse of the above k matrix is a strain mobility matrix which is the
same as a strain influence coefficient matrix and is shown on the following

page.
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2.54902E-06  -7.843137¢-07  -5.882353E-07  -5.882353E-07  4.932503E-07
-7.843137€-07  2.54902E-06 -5.882363E-07  -5.882353E-07  4.932503E-07

[k]-] = |-5.882353E-07 -5.882353E-07 4.558823E-06  -4.411764E-07  3.699378E-07 (78)
-5.882353E-07 -5.882353E-07  -4.411764E-07 4.558823-06  3.699377£-07
4.932503E-07  4.932503£-07 3.699378E-07 3.699377£-07  1.568704E-06

As shown by this simple i]lustration, the coordinates conventionally used
in finite element analyses for skin stiffness changes of any number of nodes
can be changed by matrix transformations to accommodate strain instrumentation
only, a matter of critical importance in practice where differential colinear
displacements along a fuselage surface are very small.

Application of analytical testing to a skin change. - From equation (71),

it is seen that the flight accelerations with the skin change are

(it = fa - B [t i [l ] (s} o

and the flight strains with the change are
1 1-1

()= et - o] e o] [5] Bl fr e} o

Define

{Fr} = U [krr:} {ziij ) {kw} {Er 5,«} (81)

For analytical purposes, this may be thought of as a new set of external forces
operating on the aircraft and caused by the skin change. In this case, these
are tensile forces, as illustrated in Figure 10. Equations (79) and (80) may be

written

fui - {a) - ] {5 2)
and M5e. ]

() fod - [ )
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The strain stiffness matrix, krr’ of the contemplated skin change is obtained
from a finite element analysis as discussed above. From flight tests of the
baseline aircraft, the accelerations {qk} and the strains {ej} at coordinates
of interest are known. From modal shake testing (or finite element analysis)

of the baseline aircraft the orthonormal modes [Wk] and [%§€)J and the fre-

quency function [F] are known.

The nonflying shake test aircraft is instrumented with strain gages as
shown in Figure 13 for a nine node change and a modal analysis test is done to

obtain the orthonormal modal elements of wgk)]. The distance between nodes
should be as large as possible to avoid large orthonormal strain mode elements
at very high frequencies which occur when there is negligible inertial effect

at a node. Long gage strain gages are preferred to minimize local effects.

Figure 13. - Strain gages on the fuselage for flight and shake tests.
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In equation (82)

] -l o [ )

and in equation (83)

o€ ; T
- ] (] B

A certain amount of engineering judgment must be applied to the mobilities
and stiffnesses used in the equations when dealing with high Toad factor maneu-
vers in which the skin buckling might occur before reaching 1imit load. An
approach to further investigations of this problem might be to consider an
approximate strain stiffness matrix of the estimated decrease in skin stiffness

with buckling, k

- and formulate

| 4
d¢ =+ de - ) . 8Aqr ~ aAqr
{(’A%Jbucmd ) {Sﬂ—r} e - [ {m_r] [f] [B—A—f:} e

If the krr matrix of equation (81) is multiplied by a constant factor, c,

the equation may be expressed as
-1
3AQ
_ r
(k= B ol ]| Do fered (35

That is, the unit matrix is simply replaced by a diagonal matrix of the recip-
rocal of the change factor c. The acceleration change along k

. ,
—_Z—E= 1 - Laﬁk/aAf,.] [13] + [krr] [g%iﬂ [krr] Egir (87)
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and the strain change along j

) -1

€. 9Aq .6

J _ 1 r ror
et e, |1+ o] [l o]

€5 L K r ; rej |saf, re ej6j

(88)

for any flight condition.

Equation (88) may be displayed as a function of c, the change factor, as
shown in Figure 14. 1In a skin change, c would be the proportionality of skin
thickness of the change. In this manner, the effects of the contemplated
change at many different fuselage locations in a variety of maneuvers can be
systematically evaluated to select the most suitable compromise of thickness

factor.

Strap, Stringer and Strut Changes. - For a stringer or strap change, as
shown in Figure 15, the stiffness matrix of equation (71) is diagonal with each
element being the axial stiffness of the corresponding section of the strap.

Equation (71) may then be expressed as

q, q 3q, / aaf LYiYs|
.S G s S N PO S o El_. + SZ?E {6r Er} (89)
el € Bej/aAfr rr r

J J

In evaluating the effects of a possible strut addition where there is no
strut at present, as in Figure 16, there is no existing surface on which to
place strain gages. A pin-ended tube can be put in the position of the strut
to activate a differential motion transducer such as a linear differential
voltage transducer or potentiometer. The term krr is the axial stiffness of

the strut in equation (89) which may be written

Ay Ch
P S Pl S Rkt e i
€] € BEJ/BA "

rr (90)

1/k_ + aAqr/aAfr

rr
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STRAIN OR VIBRATION WITH CHANGE

STRAIN OR VIBRATION WITROUT CHANGE

Figure 14.

0 1 2 3 4
CHANGE  FACTOR

- The change in flight response of any coordinate in
any maneuver displayed as a function of a change
factor, such as skin thickness.

Figure 15. - A strap change of stiffness.
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Figure 16. - A strut type change and differential transducer
instrumentation in shake test.



TECHNIQUES AND PROCEDURES FOR VIBRATION TESTING
OF THE AH-1G HELICOPTER

The development of effective techniques for shaking the AH-1G and analy-
zing the acquired vibration data constituted a major part of the research work
associated with analytical testing. The validity of the methods employed rests
heavily upon the consistency between the measured structural mobilities and the
theoretical models for which these mobilities are derived. This consistency is
critical since the measured mobilities are used not only for obtaining the
global modal parameters of the test vehicle, but also to derive mobilities

which were not measured directly.

Digital signal analyzers have made it possible to measure the response of
structures to any physically realizable excitation. However, the interpreta-
tion of measured structure to specified excitation forces is subject to the
mathematical model used in the process of analyzing the data. The model may be
more or less sophisticated, depending on the test data. The dynamic testing of
a structure 1ike the helicopter poses a number of specific problems. These
problems are associated with: (1) the size and complexity of structure;

(2) nonuniform distribution of mass, stiffness, and damping; and (3) the cor-
rect application of linear vibration theory to the process of data acquisition

and analysis.

It has been implied that the techniques adopted for the structural dynamic
testing are closely related with the theory underlying the vibration analysis.
A discussion of the specific test procedures must necessarily be preceded by
a brief summary of the theoretical considerations. This chapter addresses:

(1) the theory of the generalized linear structure; (2) the principal charac-
teristics of acceleration mobility data; (3) testing procedures for global
parameters and the estimation of these parameters; (4) testing procedures for
obtaining mode shapes and the method of calculating mode shapes; and

(5) methods for deriving mobilities from modal data.
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Theory of the Generalized Linear Structure

The dynamic properties of any structure can a]Ways be characterized by a
relationship between a selected set of motion coordinates and the set of exter-
nally applied forces, i.e.:

Motion] _ |Character of Force o : (91
Vector Structure Vector )

The character of the structure implied in equation (91) will be termed mobility.
If the motion vector is a vector of displacements/velocities/accelerations, the
character of the structure is termed displacement/velocity/acceleration mobility,

respectively.

The central phenomenon of vibration theory is cyclic oscillation, hence
the quantities that go into equation (91) are generally sought in the frequency
domain; for example, in acceleration measurements:

{(0)} = [V(w)J{f(w)} (92)

where {y(w)} is the Fourier transform of the accelerations; [Y(w)] is the
acceleration mobility matrix; and {f(w)} is the Fourier transform of the vector
of generalized forces, compatible with the selected set of coordinates.

From a measurement standpoint, the jkth element of the matrix [V(w)]
relates the acceleration measured along the jth coordinate when the only force
acting on the structure is that applied along the kth coordinate; i.e.:

yj(w) = ij(w) fk(m) when f. 4y = 0 (93)

Linear vibration response of a structure may be characterized by the following
conditions: (1) the response of the structure to random forcing is stationary
in time (i.e., forced vibrations are steady); (2) the elements of the matrix
[V(w)] are functions of frequency only, and depend on neither the motion coordi-
nates, nor the forcing vector; and (3) the mobility matrix [Y(w)] is symmetric;

i.e., ij = ij.
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The foregoing conditions have specific practical implications in vibration
testing and analysis. The first condition is necessary for any structure to
survive continuous operation under arbitrary dynamic excitation. The second
conditipn more or less stipulates the type of shake test data that.is adequate.
for_ana]ysis based on a 1inear model of the structure. If the mobility func-
tions measured for different force levels are not the same, the assumption of
Tinearity is not satisfied. This is usually the case when only paft of the
structure may be participating in the response. As the force level is
increased, more and more of the relevant motion coordinates of the structure
start to participate in the response. The range of linear response is reached
only when the measured mobility remains unchanged with changing force levels.
The third requirement is that of reciprocity. If the shaking and measurement
stations are interchanged, the same mobility should be recorded, otherwise the
[Y] matrix will not be symmetric, as required by the Tinear model.

It is important to note that, in the foregoing characterization of a linear
system, no assumptions are made about the nature of the damping mechanisms
occurring in the structures. A1l the conditions required for linear modeling
can be verified in the process of the actual shake test of the structure.

The relationship between the Fourier transform of the force vector and
that of the displacement vector of a steadily vibrating undamped multiple

degree of freedom system can be written as:
[ % 0+ 1Ky w) = £(0) (94)

where [M] and [K] are real, symmetric mass and stiffness matrices, respectively.
Thus, the displacement mobility matrix for an undamped system is simply:

-1 _
[Y()]y = [- of 4] + K] (95)

The presence of damping in its most general form can be modeled by introducing
a frequency dependent complex damping matrix into equation (95), i.e.:

B
V() = [+ of 1] + [k + 0Rw)] + 400" (w)] (96)
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It is to be carefully noted that this analytical development has meaning
only in the frequency domain for the general case of damping. This is mainly
because the physical quantities that can be used to characterize the arbitrary
damping of a structure are related to the energy dissipated per cycle of oscil-
lation. In cases where the time domain, force/motion relationship, repre-
senting the damping mechanism is known, the damped equations of motion can be
developed in the time domain and then Fourier transformed into the frequency
domain. However, taking the inverse Fourier transform of the frequency-domain
equations that may adequately describe an arbitrarily damped system may not
yield a time-domain system of equations that makes physical sense. In other
words, arbitrary damping mechanisms may not be susceptible to a time-domain
description. Mathematical models, developed from time-domain equations of
motion, usually fail to identify global characteristics of structures with sig-

nificant damping.

In general, the elements of [DR(w)] are small, compared to those of the
[K] matrix. Also, in order for reciprocity conditions to be met and for energy
to be dissipated, the damping matrix must be symmetric and non-negative
definite over the entire frequency range.

For a damped system, then:
(1K) + 300()] - o M) (o)} = (Fl)) (97)
Consider the complex, frequency dependent characteristic value problem:
[SERCIOMIBERIBIGIT: (98)

where {¢} = {¢R} + 1{¢I} is the complex characteristic vector which can be
assumed to be frequency independent; i{w) = AR(w) + 1AI(m) is the frequency

dependent complex eigenvalue.

If combinations of [%j(w)’ {¢}j} and (Xk(w)’ {¢}k] exist, which satisfy equa-
tion (98), then:
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e ¢

{¢}I [[K] + 1'[D(w)]]{¢}j Aj(w){zp}l [M1{o3 4 (99)

and

@] (167 + 10001 to), = A () to3] THIce3, (100)

{¢}T denotes the transpose of {¢}. By virtue of the symmetry of the [K], [M],
and [D(w)] matrices, equations (99) and (100) lead to the following orthogon-
ality relationships:

T i
{¢}j [M] {63, = my 85y (101)
and
T ) . .
] [0+ 10 ten, = [k + 1dy0)] oy (102)
where:
T
k. = (o)} [K] {6}, (104)
j j j
T
dj(w) = {¢}j [D(w)] {¢}j (105)
§.. =03 #k
kT3 R (106)
It follows that:
torr [[KT - w2 M + 100(w)]] 143, = [k - Wlm. + 1'd.(w)]<s
73 k j ’ j jk
= ()\-(w) - w2>m- 8. (107)
J J ik
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If the vectors {¢}. exist, it can easily be verified that only the imaginary
parts of xj(w) need be frequency dependent. So that:

Alo) = x? i x§ (0) (108)

Indeed, by post-multiplying the transpose of equation (98) by {¢};, which is
the complex conjugate of {¢}j, the following equation is obtained:

@ [0+ 106 61] = g0 0] 141 03] (109)

Similarly, the complex conjugate of equation (98) can be premultiplied by
{¢}§ to get:

{¢}g [[K] —1[D(m)]]{¢}; - A;(w) {¢}§ [M] {¢}; (110)

From equations (109) and (110);

* _ T * T *
and
* - A T * T *
xj(w) - Aj(w) 21 {03 [D(w)]{¢}j/{¢}j [M]{¢}j (112)

The right hand side of equation (111) is a frequency independent quantity. How-
ever, the right hand side of equation (112) is frequency dependent, establishing

the validity of the claim made in equation (108).

A complex L x N modal matrix [¢] can be defined such that its jth column
is the L x 1 vector {¢}j; j=1, 2, ...N, where L is the number of coordinates
chosen to describe the system and N is the number of modes of the system. In
principle, N is infinite; in practice, over a given frequency range, only a

finite number of system modes are necessary.
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Equation (97) can be rewritten to give,
-1
{y(w)} = [e] [[é]T [[K] - WP M] + 1'[D(w)]] [fb]} [(b]T{f(w)} (113)

and, using the orthogonality relationships, leads to the results,

ty(w)} = [ ! _ T (Flw)y (114
’ * (05 -8+ nlw] g el 1#ludy )

By definition: {y(w)} = [Y(w)]{f(w)} ; hence,

N ltey, ted :
[Y(w)] = ] |0 — (115)
n=1 n (A - %) + 1 xn(m)
AE and xi(w) have units of (frequency)2 and, from physical considerations, both
AE and Ai(w) are positive. It is, therefore, possible to define:
R _ 2
Ay =9 (116)
and
I _ 2
An(m) = gn(w)Qn (117)

The matrix of modal acceleration coefficients of the nth mode is defined as:

[A], = ,]n— (43 (43] (118)

The acceleration mobility matrix and the displacement mobility matrix are

related by:

[¥(0)] = - o [V(w)] (119)
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Making use of equations (116), (117), (118), and (119), the jkth acceleration
mobility can be written as:

w /Qn

A. (120)
I (12 WP ?) + g (w)

e N
ij<w) = - Z
n=1

In the most general case, the dependence of gn(m) on frequency may not be kncwn.
However, it is expedient to take advantage of the fact that the ign(w) term 1in

2.1, q.e.,

equation (120) is dominant only in the frequency range where mz/Qn
near the natural frequency of the nth mode. Thus, any suitable representation
of gn(m) which matches the correct value in the neighborhood of w = 2, may be

assumed.

The general form of the jkth element of the acceleration mobility matrix

can be written as:
N “2/9n2
(121)

(1o WBre? )+ g (w)

o1 I
kT Y56 T Eg TR - ) A
n=1

where ER + 1E! represents the rigid body acceleration coefficients (E§k is

Jk Jk
usually very small compared to the rest of the terms in the series and is often
_ AR .
jkn = Pikn * TA5kn
modal accelerations for the nth mode; 2 and g, are the natural frequencies and
damping coefficients of the nth mode, respectively; w is frequency.

negiected); A is the jkth complex element of the matrix of
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Characteristics of Acceleration Mobility Data

Mode frequency functions

The real and imaginary parts of ?ﬁk can be written as:

N
R =Ry [AR R (w) - AL Fl (w)]

Jk — Sik jkn 'n jkn 'n
n=1
and N
1o_ .1 I R R oI
Vik = Ejx - 2 [%jkn P (@) + Agn Fr (“)]
n=1
or: N
. _ R I
Vi = B3 * 0B = 1 Agn Fo (W)

where the mode frequency functions are defined as:

2, 2,2, 2
w /Qn (w /Qn - 1)

--R
F© (w) =
n (wz/gnz “1)2 . 9n2
I _ gn mz/ﬂnz
Fp (@) = ——— 5 5
(w™/2," - 1)" + g,

and

Foo(w) = FY (o) + iFD ()

(122)

(123)

(124)

(125)

(126)

(127)

Equations (122), (123), and (124) represent the measured acceleration mobility
as a linear combination of the mode functions. It is, therefore, important to
acquire a familiarity with the basic characteristics of the mode functions of

damped systems and the essential features of their linear combinations.

Plots

of FX (w) and F! (w) as functions of frequency ratio for three values of the

damping coefficient are shown in Figure 17. The polar plots of the complex

F (w) functions are shown in Figure 18.
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Figure 17. - Real (ER)"and imaginary (EI) parts of the complex "mode"
function F (w).
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Figure 18. - Polar plot of the complex F (w) function.



The FX (w) function is characterized by two peaks at

w1y = 9 //q-; gnz_- g, /1 + gn2 (128)

and
- ' 2 2,

Won T //q TG, SV g (129)
while the FI (w) function has only one peak at Wy, = 9 1 + gn2 .
Note that,

(1)2'u)2
2n 1 _ 2
=9, 14, (130)
n

which increases with increasing damping.

From the plots in Figure 17, it is seen that Tinear combinations of ER and FI
vary rapidly in the vicinity of the natural frequency, and are either negligible

or slowly varying with frequency in the regions away from the natural frequency.

Separated Modes. - Equation (121) carries the basic implication that the

effects of the structure's modes occurring at different frequencies on the mea-
sured mobility are additive in the frequency domain. If a mode occurs at a fre-
quency, in the neighborhood of which the contributions from the other modes of
the structure are either negligible or are weakly varying with frequency, such

a mode is said to be well separated. The nature of the measured mobility in
this frequency range will be dominated by that particular mode.

Classical Modes. - In the case of a classical mode, i.e., when the system

mode shape is the same for the damped system as it would be for the undamped

system the Ajkn is a real number, i.e., A = 0, and the real part of the mea-

jkn
sured acceleration mobility will show two turning points for each separated
mode and the imaginary part will show a single turning point only. For a
classical mode, equation (130) can be approximated to give an estimate of the

damping coefficient: 9, = (w2n - w]n)/Qn .
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Figures 19 and 20 show acceleration mobility measurements obtained from a
helicopter structure. Two close, but distinguishable modes are present. The
dominant mode can be seen to be very nearly classical, with double turning
points in the real, and a single turning point in the imaginary mobilities.

Complex Modes. - For the general case of nonclassical or complex modes,
both AR and A§kn are significant. The measured real and imaginary mobilities

of a wgﬁ? separated mode contain linear combinations of both FR(w) and FI(m)
in proportions given in equations (122) and (123). In particular, if

A§kn >> A?kn’ it is the imaginary part of the acceleration mobility which will
show two turning points, while the real part will show a single turning point
only. Figures 21 and 22 show an example of this occurrence in the data measured
from the AH-1G (the shaking coordinate was vertical at the tail, and the mea-

surement coordinate was vertical at the nose) between 40 Hz and 50 Hz.

Coupled Modes. - System modes, occurring in frequency ranges such that
their mutual contributions to the measured mobility in this frequency range are
rapidly varying functions of frequency, are said to be coupled.

Mode Clusters. - A mode cluster (or a cluster of modes) is characterized
by a group of system modes which are coupled together by virtue of the prox-
imity of their resonances. Mode clusters are usually separated by regions of
negligible or slowly varying mobility values in the frequency domain.

Mode clusters generally have the appearance of single modes in wideband,
Tow frequency resolution mobility measurements. Higher resolution data usu-
ally helps to reveal the modal content of a particular mode cluster. Figure 23
shows broad band (0 - 200 Hz) mobility of a helicopter vertical tail shake,
measuring vertical acceleration at the nose. Between mode clusters, measured
mobility is seen to vary slowly close to the zero value. In fact, what appears
to be a single mode in the 0 - 10 Hz frequency range is actually a cluster of
two modes as Figures 19 and 20 (which are higher resolution measurements of the

same mobility in the 5 - 10 Hz range) show.
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Figure 19. - Measured acceleration mobility of a helicopter between 5.5
and 10 Hz. (Shaking vertically at the tail, measuring verti-
cal acceleration at the nose.)
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Figure 20. - Data of Figure 19 plotted on the Argand Plane.
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Figure 21. - Measured acceleration mobility of a helicopter between 38 Hz
and 52 Hz. (Shaking vertically at the tail, measuring verti-

cal acceleration at the nose.)
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Figure 22. - Data of Figure 21 plotted on the Argand Plane.
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Figure 23. - Measured acceleration mobility of a helicopter between
2 Hz and 200 Hz. (Shaking vertically at the tail,
measuring vertical acceleration at the nose.)

Identification of mode clusters is useful in determining which modes
should be included when truncating equation (121), since the contributions of
the remaining modes are either negligible or frequency independent. It also
helps in identifying frequency segments for higher resolution data acquisition.

Shake Testing for Global Parameters

Each elastic mode of the structure is characterized by a natural fre-
quency @ and a damping coefficient 95 which are global properties of the struc-

These are the only constants that enter into the mode frequency functions.

ture.
The

They are the same for a given mode, regardless of the response coordinate.
first stage of modal testing is to determine the global parameters of the domi-
nant elastic modes which occur inside the frequency range of interest.
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The experimental data required for determining the global parameters are
the continuous frequency plots of a number of mobilities which are considered
to represent the global vibrational behavior of the structure. For a selected
set of shaking Tocations, e.g., tail vertical, tail rotor gearbox lateral, etc.,
the transfer functions between the response coordinate and the shaking coordi-
nate are measured over the determined frequency range. Typical response coor-
dinates for such measurements are: (1) nose vertical; (2) wing (right and/or
Teft) vertical; (3) center of gravity vertical; (4) tail vertical; and
(5) horizontal stabilizer vertical.

The test set up for measuring frequency dependent mobility functions is
shown in Figure 24. The helicopter is suspended as a free body by soft rubber
bungee chords. The configuration shown has the shaker Tocated vertically at
the tail and the response accelerometer at the horizontal stabilizer verticatl.
Signals for driving the electromagnetic shaker originate from the signal gener-
ator. A force gage, installed at the point of force application generates
voltage signals which are proportional to the applied force. These signals are
inputs to the dual channel digital signal analyzer. The accelerometer at the
response coordinate generates voltage signals, proportional to the response
acceleration, which are also inputs to the digital signal analyzer.

The signal analyzer is capable of sampling the time-domain force and
response signals, digitizing these samples and computing the real-time Fourier
transforms of the data. It also computes the lTeast squares estimate of the
frequency-domain transfer function between the input and output spectra, which
is the mobility between the response and forcing coordinates. A1l the fre-
quency functions computed by the analyzer over the specified frequency interval
can be stored on cassette tapes for future restoration and analysis. The
oscilloscope allows the monitoring of the time-domain signals emanating from
the force and response transducers. The frequency counter is used to precisely
measure the freguencies of harmonic signals when required.

The accuracy with which the global parameters can be estimated is criti-

cally dependent on the quality of the data acquired for this purpose. For each
pair of force and response locations, a random shake is done with the frequency
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Figure 24. - Schematic of test set-up for global
parameter testing.
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bandwidth set to span twice the frequency range of interest (in this case,

0 - 200 Hz, since the modes of interest are between 2 - 100 Hz). This is done
to insure that the modes up to 100 Hz are not coupled to modes occurring beyond
100 Hz, as may be the case when a local mode is present. For each new shaking
station, several force levels are tested until the range of applied force is
reached where the mobility plots do not depend on the force level anymore.

This is one of the linearity requirements on the mobility plots. Having estab-
lished the required force level and the absence of local coupling modes at
higher frequency, another random shake is done, this time with the bandwidth
set at 2 - 100 Hz. The above procedure is repeated for all the accelerometers
which have been selected for global parameter testing.

The ratio of modal acceleration coefficient to damping (Ajkn/gn) varies
not only from mode to mode, but also from mobility to mobility, for a given
mode, and the prominence of the various modes of the structure will be different
in each of the mobilities recorded. That is to say, a given mode i occurring
at 0. may appear very prominently on mgbi]ity ij(w), while the same mode may
not be so significant in the mobility le(m), where % designates a response
coordinate different from k. This will especially be the case if the mode shape
associated with mode i has a much larger mode element at coordinate k than
coordinate 2. The prominence of a mode may also be due to light damping. Thus,
by examining the set of broadband mobilities recorded, it is possible to asso-
ciate each mode i with the mobility where the mode most prominently appears.

Although it is possible to obtain rough estimates of the natural frequen-
cies and damping of the structural elastic modes from these broadband mobility
plots especially when damping is very light (e.g., peaks of the imaginary
mobility plots, and frequency separation of the peaks iq the real mobility
plots), there are a number of specific considerations why broadband mobility
data is not suitable for global parameter extraction. Among these considera-

tions are:

Measurement Accuracy. - The low frequency resolution associated with broadband

mobility measurements tends to introduce errors into the measured mobility
Leakage has to do with a spreading

values due to the phenomenon of leakage.
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of the energy contained at each discrete frequency over a relatively narrow
band nearby. Although considerable effort is exerted into reducing leakage
effects (e.g., by appropriately windowing) by the equipment manufacturers, the
phenomenon still has to be reckoned with when the frequency resolution gets
below certain 1imits. For acceptable measurements, bandwidths of about 25% of
the center frequency have been recommended.

Parameter Extraction Accuracy. - Also associated with low frequency resolution

are inaccuracies in the parameter extraction methods due to the frequency
spacing between successive data points. The polar plot of mobilities, (see
Figure 18) in the vicinity of a mode, describes a circular arc. Most methods
for extracting natural frequencies, damping and modal acceleration coefficients
are based on fitting a continuous circle through measured data and in some
cases computing the rate of change of the arc length with frequency. Since the
frequency data is discrete, arcs of the circle are necessarily approximated by
segments. The error incurred by approximating a circular arc by a straight
line segment increases as the frequency spacing between successive data points
increases. Narrow band data, with bandwidth Tess than 25% of the natural fre-
quency of a given mode, have been found to yield sufficiently accurate results.
Initjal estimates of the natural frequencies can be obtained from the broadband
data.

For sufficient frequency resolution and to minimize leakage, the following
bandwidths are recommended for use in narrow band testing using the HP5420A

signal analyzer.
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Natural Frequency, . (Hz) ( Bandwidth
Equal to or greater than But less than (Hz)
2 3 .5

3 4 .781

4 6 1.000

6 8 1.5625

8 12 2.000

12 16 3.125

16 25 4.000

25 32 6.250

32 50 8.000

50 64 12.500

64 100 16.000

In cases of g greater than .25 use a broader bandwidth. In all cases use the
natural frequency as the center frequency.

Swept Sine Testing

For all the narrow band mobility measurements, the excitation was achieved
by applying pure sine wave signals to the electromagnetic shaker and varying
the frequency of the sine waves over the range spanned by the bandwidth. This
so-called swept sine technique was preferred to other excitation techniques
over a narrow frequency band. Among other reasons for choosing the swept sine

technique are that:

1. The energy input into each measurement frequency is maximum.

2. By choosing the right sweep speed (see sketch on following page),
the steady state sinusoidal response of the structure is achieved
at each measurement frequency. This is one of the assumptions
made in the derivation of the generalized linear model.

3. Measurements are more accurate and reproducible.

4. The sampling frequencies and the adequate number of averages

are more easily determined.
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5. Good linearity and reciprocity checks were obtained.
6. High resolution of close modes can be achieved by selecting

the right sweep speed.

Consider an undamped single degree of freedom linear system, described by

the following equation of forced vibrations:

mx + kx = Fe @t (131)

If the forcing frequency coincides with the undamped natural frequency, i.e.,
= /ﬁ- , the response of the system is secular, and grows Tinearly with time.

w =

Schematically:

F(t) System X(t)

Input Response

The undamped steady state response is governed by

or,

However, because of the various dissipative mechanisms which constitute damping,
the oscillations reach a 1limiting amplitude after some characteristic time r.
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For damped hysteretic damping, g, the steady state response is governed by

X + (1 + 1g)sz = %—eigt (134)
or,
x(t) = - S ' (135)
mgQ

The steady state amplitude is given by

Xs = — - (136)
mgQ

and the characteristic time for reaching steady state response can be estimated

by equating,

XT(T) = Xs (137)
which gives,
F F
T = (138)
2mQ mng
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thus:

2 _ 1
g% - gt (139)

T =

{a]

Suppose there are two neighboring structural modes with the natural freduencies
separated by Af Hz. To resolve these two close modes, the speed at which the
excitation frequency is changing must be of the order of:

v = Va. = ngf Ae Hz/sec (140)
where g = damping coefficient (lower bound)
f = frequency in Hz
Ag = mode resolution in Hz.

If an estimate of the lower bound of the damping coefficient and the required
mode resolution are available, the sweep speed required for swept sine shake
testing is directly proportional to the frequency,

V(Af)
i.e. —— = const (141)

The relationship between the Tinear scale and the Togarithmic scale on the

signal generator is:

.F

_ hz
faec = 19970 ??;— (142)
where
f,, = frequency in Hertz; (f, < f, 5_10f0)
fdec = frequency in decades; (0 j_fdec < 1.0)
fO = base frequency on the scale.

From equation (142)

f

£ x 10 dec (143)

frz = fo
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df df df

| hz hz dec :
Sweep speed v = = X Hz/sec. (144)
dfdec dfdec dt
From equation (143)
df f
hz dec
o (fg &n 10) x 10 %€ = £ on 10 (145)
ec
df
and thz = dgec 2n 10 (146)

Thus, by selecting a constant logarithmic sweep speed (dfdec/dt = const. = a),
equation (141) is automatically satisfied.

The constant o is determined by substituting the desired value of ?!— into
hz

equation (146). For example, if at 2 hz we desire a sweep rate of 0.01 Hz/sec,

then

@ = LOUE0) gec/min = .13 dec/min (147)

Estimation of Global Parameters

Various techniques have been developed for estimating the natural frequen-
cies and damping coefficients of the elastic modes of a structure from mobility
data. In all cases, certain assumptions have to be made about these modes.

The simplest case is when the mode is well separated and 1ightly damped. For
such modes, the natural frequency can be approximated by the peak of the imag-
inary displacement mobility. The damping coefficient can be estimated as:

w2 wz Wp =~ W
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where Wo and wy are the turning point frequencies in the real displacement

mobility. The above simple case is almost exclusively reserved for simple

structures with uniform distribution of mass, stiffness, and damping. Very
few of the modes of the helicopter can be treated this way. '

The ds/df2 method of Kennedy and Pancug. - The following is a more general
approach which has been found to work well for both classical and complex,
close or separated modes. By analogy with equations (122) through (127), the
Jkth displacement mobility can be expressed as:

Jk 2 jkn "n jkn "n
- C
n_.
. R I I R
‘i [Ajkn Fleal Fn]} (149)
_ R .1 . . . . .
where, Ajkn = Ajkn + 1Ajkn’ is the jkth modal acceleration coefficient of nth

mode and Ejk is the contribution from the rigid body modes.

Recall that

_ R . I _ ;_] iy
Fn(m) = Fn(m) + i Fn(w) = wz Fn(w) (150)
which gives
Fn(w) = Wi 5 (15])
w7 In
and
I 1 - 9y
Folw) = = > T, (152)
Q
n [] - w /Qn] + gn

In the immediate vicinity of the nth natural frequency, the displacement
mobility can be approximated by:
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- - |aR R I
ij .((l) — Qn) —-. Ajkn Fn(w) ‘ A'.

s AR I I
+ i Ajkn Fn(m) + A

Jjkn

(153)

In equation (153), the sum of the contributions from all other modes has been

represented by a complex straight line:

2

R, . D) wo, R, . I

[cn + i cn] s+ do o+ id
QI’\

Dropping the

displacement mobility separately, gives

YR (w

1

Q) =

YI (w

It
It

Q)

AR PRy - Al Flw) +

AR FI(w) + Al FR(w) +C

CR

I

subscripts j, k, n and writing the real and imaginary parts of the

Z2. R
S+ d (154)
2

2 1
L+ d (155)
Q

If the nth mode is classical and well separated, the imaginary part of the modal
acceleration coefficient vanishes and the contributions from other modes are

nearly independent of frequency.

R AR FR(w) + dR

I3

(0 = Q)

YI (w

R

Q) =

In other words, AI, c,

R Thus,

and CI vanish.
(156)

(157)

The peak of the imaginary mobility occurs when

I
dY" _ , _ xR d I

5 = 0=A -§-[F (w)

w

or, A"
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which is when mZ/Q2 = 1, as stated previously.

The peaks of the real displacement mobility occur when,

R

¥ o-o-a 4 [FR(w)] : (160)
2 2

dw dw

or
? 2
AQ (1 - /92] - g2
T =0 (]6])

2
2y (162)
—_— = _g
2
and
2
w2
S=1+g (163)
Q
or, w2 - w2 Wo = W
o T Uy
g=g-tmpyt 2] (164)
Q Q

as stated previously.

When the mode is complex, equations (154) and (155) indicate that both the
real and imaginary parts of the displacement mobility contain linear combina-
tions of FR(w), FI(w), wz, and constants. The peaks in the mobilities in the
general case may not be simply related to the natural frequency and damping
coefficients. Naturally, different degrees of approximations are feasible,
depending on how complicated the situation really is.

A general technique, which has been found applicable to the majority of
modes encountered on the AH-1G helicopter is based on the rate of change of the
arc length of the modal curve (plotted on the complex plane, i.e., the plot of
the YI against YR with frequency as a parameter).
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ds //// R 1 Mk
d(wz) i {;(wz)} ! {;(wz)} (165)

where s is the arc length.

The rate of change of the arc length with respect to the square of fre-
quency is stationary when

A A\ G &
2 2 2,2 2 2,2
d’s _ 0 = d(w) d{uw7) d(w”) d{w®) (166)
2,2 5 7
d(w”) dyR dyl
AN ?
d(w”) d{w")
or
R 2R I 2,0
ayR dy A G A
. i : xh 0 (167)
d(w”) d(w®) d(w®) d(u”)

Upon substitution of equations (154) and (155) into equation (167) and simpli-

fying, the following condition for the peak of the ?5)2 plot is obtained:
dlw
2 2
2 d dFf dF! Rr ?R 1 d%F!
|A] + + Z— 1A -A —
d( 2) d( 2) d(w2) 2 5 2 2 2
® d(w“) d(w®)
I 2.1 2-R
T T (168)
T ) d(u?)

2
where |A|Z = (A%) + (al) .

For a well separated mode, the constants CR and CI will be nearly zero and

equation (168) gives
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d 10 (el ]
— + =0
d(u?) [d(mz)} L(U,ZJ (169)

Equation (169) does not involve the modal acceleration coefficients AR and AI.
Thus, the condition for the peaking of the rate of change of the arc Tength
with respect to frequency squared, holds true regardless of how complex the
mode is, as long as it is well separated.

Equation (169) can be expanded, making use of equations (151) and (152),
and the result is:

-
2 2 ) 2 ) 5 2
]—w—z - g + 4g - e
2
d i Q | Q
5 - =0 (170)
d(w®) 2 4
8 W2 2
Q -5 + g
L ]
Equation (170) can be evaluated to yield
_ | [ 2}
w_
-2
¢ ! - 2 2 -0 (171)
d(w) 2 2 Q 3
Q8 1 - 93— + 92 1 - 95 + 92
QZ J QZ
Thus, for a well separated mode, the peak of the ?52) plot will occur at the
d(w

natural frequency, regardless of whether the mode is complex or classical. Any

suitable finite difference scheme can be used to compute d52 from measured
d{w

data using equation (165).

It turns out that even for modes that are not well separated, the peaks
of the ds plot still give good approximations to the natural frequencies.

The first
The remaining

2

w")

To establish why this is so, consider equation (168) term by term.
term vanishes at the natural frequency, as we have already seen.

terms can be rearranged as:
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2R 2.1
1 d°F [CRAR + CIAI] + 1 d°F [CIAR _ CRAI] (172)

2 2 2 2
Q d(wz) Q d(wZ)
At the natural frequency
2R
d°F
> =0 (173)
d(w?)

the remaining term becomes

2 [CIAR i CRAI]
Q°g

Lightly damped modes generally tend to be classical and well separated. This
is understandable, since in the limit of zero damping, a classical undamped
mode results. Thus, the low damping which will tend to drive 2/{2893 up, also

drives CIAR - CRAI down, effectively neutralizing the expression. This con-

sequently reduces the error incurred by approximating the natural frequency by
the peak of the dS/d(mz) plot. Experience has shown that modes which are too
close to be resolved by the dS/d(wz) routine may not be resolvable by any other

method presently known.

The diameter of the modal circle that fits the curvature of the displace-
ment mobility plot (on the polar plane) in the vicinity of the natural fre-

quency is:
[A]
aq
At the natural frequency;
R R R
dy _-A C
= =7 + = (175)

d(wz) w=R 970 Q0
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and

dy?
d(w?)

+ (178)
w=0 gQ Q . )

Substituting equations (175) and (176) into equation (165) gives

Al

ds = ——— + Error of approximation (177)
9294

d(wz)

W=

2

The plot of arc length s against w” has a characteristic S shape, as shown by

the sketch, below:

/
,//, Region around natural
frequency

By fitting the best straight line to the inflection region of the S curve, one
obtains a, the gradient of this Tine.

a = |Al/g%" (178)
From equations (174) and (178), the damping coefficient is evaluated as:
2
g = D/a@ (179)

where D is the diameter of the circle fit to the mobility data, a is the gra-
dient of the line fit to the S plot and @ is the natural frequency.
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Testing for Orthonormal Modes and Mode Shapes

The mode shapes of any structure are related to the modal acceleration
coefficients as shown in equation (118); i.e.,

A, = (180)

Jkn %; d’jn ®n
where ¢jn and oy 2re mode shape elements at the jth and kth coordinates of the
nth mode; m js the generalized mass of the nth mode. There are two basic
types of orthonormal modes which can be distinguished by considering the nature
of the response and the excitation. The ordinary vibration orthonormal mode
element, ¥, has units of (1/mass)]/2. The products of the jth and kth ortho-
normal mode elements and the mode frequency function summed over the modes
defines the jk vibration mobility. On the other hand, the strain orthonormal
mode element, W(E), has units of the square root of the reciprocal of
force x seconds2 x length. The products of the jth strain and kth vibration
orthonormal mode elements and the mode frequency function summed over the
modes defines the jk strain mobility. The types of orthonormal modes used in
analytical testing and the corresponding types of mobilities are summarized

in Table XVIII.

TABLE XVIII. - SUMMARY OF MOBILITY AND ORTHONORMAL MODE ELEMENTS

Modal acceleration Units of modal
MobiTity (Residue) acceleration
aqj 5 ]
5?; - wj wk/Q Tength/force
o€ -
—J _Lle) 2
afk wj wk/Q 1/force
3Aq
N =1 ,0e) ,(e)
aAfk 5 wj Yy GkaJ length/force
Q
3 .
kN - l?-w- wﬁe) 8y length/force
BAT), gt Y
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The orthonormal mode elements are defined as:

S
‘yjn - S d’jn (181)
n
and
S
Yen = — Sn (182)
n
Thus,
Askn = ¥in Ykn (183)
and
s = (v, )2 (184)
Jan Jn

- dkn (185)

It can also be deduced that

A. A
= i __J_Mk_rl (186)

¥in Azjn

The choice of using either equation (185) or equation (186) to determine Yo
depends on the accessibility of the modal acceleration coefficients involved.
Note that two shaking stations are involved in equation (186), whereas only one
shaking station is involved in equation (185). It may turn out that the
driving-point data that yields Ajjn are such that accurate estimations of the
Ajjn for a number of the modes are not easy. This may in part be due to a
strong local mode coupling, or a residual effect. In cases where this is so,
it may be better to shake at a number of coordinates, and then use schemes

similar to that in equation (186).

Consistency of the phase angle in equation (186) is achieved in the fol-
Towing manner. For an orthonormal mode element, in the nth mode, of large mag-

nitude, say Yin? let
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A. LI A ' . . .- . '
- l Jkn ’ zkn' 1
Ykn / IAEJ’nl 5 (¢jkn * 9okn - %-n) (187)

where ¢ is phase angle. For any other orthonormal mode element, say p,

A .
an = ///T*JET ’AEQEI (4

zjnl

pkn - ¢kn) (]88)

Mode shapes of the structure, normalized with respect to the highest mode
element can be obtained directly from the modal acceleration coefficients as:

Aitn
{o,) = K}ji;;j;- *AjZn" (189)
A;]Nn
where A. is the modal acceleration coefficient with the maximum amplitude

J.max,n
in the column corresponding to the nth mode, when shaking at the jth coordinate.

The generalized mass, corresponding to the mode shape thus normalized is com-

puted from equation (180) as:

M = 4’jn ¢kn/Ajkn - A\]'jn/(Aj,max,n)2 (190)
In order to obtain the elements of the orthonormal modes and mode shapes,
the modal acceleration coefficients of all the modes for the mobilities
relating the response coordinates to the shaking coordinates have to be deter-
mined. The computational scheme for determining the modal acceleration coef-
ficients requires mobility data at discrete frequencies. The technique, herein
referred to as the matrix difference method, was developed by F. D. Bartlett,
Jr., of the Structures Laboratory, USARTL (AVRADCOM). The matrix difference
method is well suited to processing large numbers of transducers for modal
analysis using multiplexing data acquisition systems common in the helicopter

industry. The natural frequencies and modal damping must be determined before-

hand.
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For two frequencies w: and w; in the region of the natural frequency of

the ith mode, equation (124) could be written thus:

Aink

It

Vie(w]) = ¥ (0]) = z A (191)

Jkn i n

where

A_i Fn

Foog) - F(u])

Equation (191) can be written for all the remaining modes, having selected the
corresponding pairs of frequencies. The resulting system of equations is the
matrix difference equation:

A ij A]F] A]FZ . A]FN Ajk1
18, ijr = AZE] AZFZ Co. AZEN JAijT (192)
By ijJ ANF] ANEZ Coe ANFN Askn
or
{Avjk} = [aF] {Ajk} (193)
From which
{Ajk} = [aF]"! {quk} (194)

An immediate observation about the matrix difference scheme is that all
contributions to the mobilities near a given mode which are weakly varying with
frequency, such as the effects of distant modes or rigid body modes, are sub-

tracted out. By proper selection of wf and w;, Aiﬁn can be made such that

. . 1
AiFi is large and AiFj is small for all j#i. Experience shows that

w?= 2:(1 + 9./2) (195)
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and _
wy = 2;(1 - g4/2) (196)

are the most effective choices for the upper and lower discrete frequencies.
For these discrete frequencies, the matrix [AF] is well conditioned for inver-
sion since the off diagonal terms are small compared to the diagonal terms.

Test procedure. - Figure 25 shows the schematic of the instrumentation
set-up for the shake test for orthonormal modes and mode shapes. Signals from
all the accelerometers and from the force gage are transmitted via telemetry
to a computer where the transfer functions between the response coordinates and
the force coordinate are computed and printed out. The excitation signals are
sinusoidal at the discrete frequencies m? and w; for i=1,2, . . . N. The
same force Tevels used for the swept sine global parameter shake test are also
used for the modal shake test at the corresponding discrete frequencies.

Derivation of Mobilities

Underlying any technique of modal analysis is the principle of Tinear
decomposition of structural response mobility into contributions from the natu-
ral modes occurring between a chosen freguency interval. The preceding methods
estimate not only the natural frequencies and damping coefficients of each
mode, but also the modal acceleration coefficients of each modal contribution
to the mobility between response and forcing coordinates.

Subsequent to the determination of the modal parameters and modal con-
stants, the next logical step is to reconstruct mobilities both between a pair
of forcing and response coordinates over a continuous frequency interval, and
at a chosen freguency between several pairs of forcing and response coordinates.
By comparing the mobility derived over a continuous frequency range with the
measured mobility over the same frequency range, some assessment of the accu-
racy of the global parameter estimations can be made. The comparison of dis-
crete frequency mobilities for a large number of coordinate pairs allows the
assessment of the acceptability of the orthonormal mode and mode shape calcula-
tions. The results of these comparisons build the confidence in the mobilities
which are derived but not actually measured.

104



R e e S

Rubber bungee
{ chords

TForce gage

ignals fro Electro Pover
acce]erowet magnetic __
4], : shaker ”“
]
e === | Signals
Transmitter |——== from force gage
= i
~___ 7
Frequency
¥/ counter D
Telemetric [ d ¢
data acquistion system = = Oscilloscopg
Signal
generator [ °p }
— [e) =) C‘; (%] —

Receiver E> Print out

Computer of
mobilities

Figure 25. - Schematic of test set-up for matrix difference
method of modal testing.
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Comparison of measured and simulated mobilities over frequency band. -
Global parameters 2 and 9 of system modes occurring within a specified fre-
guency range can be satisfactorily estimated using methods based on the prop-
erties of the mode functions, F (w). The matrix difference method can then be
used to calculate the modal acceleration coefficients (A§kn’ A§kn) of the rele-
vant elastic modes. Figure 26 shows plots of the mobility measured between
0 and 50 Hz. Table XIX summarizes the parameters estimated between 0 and 50 Hz
from the tail vertical shake/nose vertical acceleration data. Using the
parameters of Table XIX and equation (121), without including the rigid body

coefficients, the plots of Figures 27, 28, and 29 were generated.

The computed and measured mobilities are superimposed in Figures 28 and 29.
It is seen that the two plots agree to within a frequency independent complex
constant, which is an estimate of the contribution of the rigid body modes.

ARG Re: 62 M: 134 £XPR0

Figure 26. - Measured acceleration mobility data between
2 Hz and 50 Hz.
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TABLE XIX. - ESTIMATED PARAMETERS BETWEEN 0 - 50 Hz
(TAIL VERTICAL SHAKE, NOSE VERTICAL

ACCELERATION)
[ Nose/tail modal acceleration
coefficient
Natural Real Imaginary
frequency DamPing AR AI
Mode No. o, coefficient IN, ZT, n IN, ZT, n
n (Hz) 9, g/1000 N g/1000 N
1 7.33 0.062 .165 .032
2 8.09 0.12 .102 - .081
3 13.3 0.13 - .004 - .001
4 15.97 0.085 .005 .032
5 16.35 0.05 .012 0
6 17.63 0.08 .031 - .013
7 22.1 0.15 - .017 - .092
8 28.4 0.11 - .024 .026
9 40.7 0.12 .002 - .005
0 45.3 0.026 .009 .032
TRANS Rx: S8 sA: 18

Figure 27. - Numerical simulation of the elastic component
of the acceleration mobility data.
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Modal Series Method. - Equation (121) can be rewritten in the following

form:

. N
ij = E Z

L
+ Rjk(w) + L

.. H

where L
R.k(m) is the low frequency mobility residual; i.e., contribu-
J tions to the mobility by elastic modes which occur at
frequencies below the lower test frequency limit.

R?k(w) is the high frequency mobility residual.

The rigid body acceleration coefficient, Ejk’ is determined from geometry and

weights data.5

If the Tower test frequency 1imit is near zero, it follows that RL = 0.

The higher test frequency 1imit is usually selected high enough so that RH can
be safely assumed to vanish for all but certain driving-point mobilities which

may suffer either from local mode effects or from high frequency mode residuals.

When a1l the global modal parameters (natural frequencies and damping coef-
ficients) and the modal acceleration coefficients have been determined (see
Table XX), the acceleration mobilities between pairs of motion coordinates which
do not include the shaking coordinate can be computed from:

A

A .
_2kn_mkn Fn(w) (198)

where k is the coordinate of the shaking station for the data which generated
Axk and Amk‘ It is necessary to select the shaking station k such that there
is no local mode or high frequency residual effect on the estimated value of
Akkn®
If only Nk of the modes are well defined by shaking at k, while the

remaining NP modes are better defined by the shake at p, then
N N

k A . pA, A .
Vo= Byt ) IR E )+ § SRTRLE (4) (199)
n=1 kkn n=1 ppn
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TABLE XX.

~ SUMMARY OF ESTIMATED MODAL PARAMETERS
FOR AH-1G HELICOPTER.

High High gross wt.
gross wt. Low gross wt. Mean gross wt. aft c.qg.
Vert.shake| Vert.shake| Lat.shake} Vert.shake| Lat.shake] Vert.shakel Lat.shake
Q 0 Q Q Q Q Q

n n n n n n n
9 I 9 9y In 9 %
7.32 7.19 6.29 7.15 6.17 7.28 6.28
.066 .07 .16 .08 .14 .07 .16
8.08 8.01 7.51 8.16 7.38 8.35 7.53
.187 7 .05 .18 .08 .08 .05
13.23 14.78 8.53 13.67 14,39 13.94 8.55
.138 . L1 .08 .15 .06 1
15.99 16.44 14.66 15.04 16.16 15.52 11.0
.103 .065 7 .07 .09 .08 2
17.6 17.71 17.36 15.92 9.05 21.48 14.35
.083 .09 . .05 114 .16 .18
22.06 19.14 25.46 16.98 23.71 16.39
.148 .12 . 11 1 .068
27.91 20.69 27.88 17.88 25.59 18.45
7 .2 .14 .07 .31 .13
24.6 29.66 19.83 29.96 21.93
i .15 .13 .13 .074
28.31 32.42 21.63 31.63 24.12
.12 .24 .16 . .108
32.88 33.59 24.12 29.38
.1 .36 .08 112
34.99 25.15
.06 .14
37.75 28.44
.08 .13
32.42
.06
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SPECIAL CONSIDERATIONS IN MODAL ANALYSIS

Shaking Locations

Nonlinearities such as gradually hardening stiffness and ankylotic stiction
are alleviated by using sufficient shaking force so that the mobility is inde-
pendent of the shaking force. The power input from the shaker is equal to the
power dissipated by the helicopter through damping and is proportional to the
product of the square of the shaking force and the imaginary velocity mobility
(or real acceleration mobility divided by frequency). Maximum motion for a
given shaking force occurs at shaking point locations of high mobility. These
are generally at structural terminations such as high on a fin, at wing tips
or the hub.

It is also important to shake in the vicinity of any possible Tocal modes
of interest. Consider the case in which, for a given mode, Wj = .2 and Yy = 2.0.
For shaking at j, Ajj = .04 and Akj = .40. The response near this natural fre-
quency may be unnoticeable at the driving point, j, but evident in the kj trans-
fer mobility which indicates that k, or a point near it, should be a shaking

point. In this example, Akk is two orders of magnitude larger.than Ajj’

Once modal accelerations have been obtained for and among the stations at
which the aircraft is excited, one shaker at a time, all the modal accelerations
can be used simultaneously for the best estimate of the orthonormal mode ele-
ments. Although the number of shaking locations depends on many factors, it
appears that five or six should be sufficient for most helicopter uses. For
the jth motion coordinate and N shaker locations the absolute value

[Aj1| + lAj2| + ...t |AjN|

y. =

J /‘A”| ¥ ’AZZ‘ ...+ 2|A]2| ¥ 2]A13| T 2‘A23! ¥ ...
N
121 )Ajil

- 12 (200)

Apn|+ Jre] = o] -+
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The phase angle of the jth orthonormal mode element is given by

1 N N _
655 % L o5t L %4 (201)

If the ds/df2 method is used to obtain the modal accelerations at and
among the shaking locations and the matrix difference method for all modal
accelerations, then

N
4 [R5

(202)

+ ..

il
: 97| + |gpre?

High Frequency Residuals

|

2
L 2’A]2/g + 2/A]3/g

The authors discovered that high frequency (e.g., 400 Hz) local modes may
cause distorted translational mobility plots, with force shaking at low fre-
quencies (e.g., 10 Hz) at or near a driving-point on the AH-1G. Dr. Albert
Klosterman and Dr. Jason Lemon of Structural Dynamics Research Corporation
noted high frequency residual effects and found the means of correction in
testing a 1750 HP electric motor for the United States Steel Corporation.]O
Dr. David Ewins of the Imperial College of Science and Technology, London,
found the same cause and effect in rotational mobilities measured on a turbine
rotor.]] The effect does not occur at all driving-points, but it is not uncom-
mon. It occurred in tail shaking and vertical shaking at FS Z400 on the AH-1G
as shown in Figure 30. It did not occur in hub shaking or shaking at the tail

rotor gear box on the AH-1G.

The effect is associated with shaking points of very small mass concentra-
tion and elastic extension as in the cantilever beam of Figure 31. In a heli-
copter these correspond to soft, but not weak points, as opposed to hard points
usually, but not necessarily, such as skin attachment points or tail skids.

In some cases of helicopter fuselage concern, the high frequency local
modes are inconsequential in engineering and should be ignored in modal
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Y

Figure 30. - Mobility curves with the high frequency residual effect
measured on the AH-1G.

by
-

Figure 31. - Cantilever beam shaken at the tip.

SANSNANNNN

superposition for mobilities. If the point in question is one at which there
is a contemplated external stores change, the point would usually have to be
hardened for the attachment and the effect would disappear. Only when true
very local response is desired should the high frequency Tocal modes be
retained and this would be the case on panels and decks. If the high frequency
residual effect occurs in direct shaking at a change point which is to be har-
dened and the effect not removed then there couild be significant errors in the
analysis of the effects of the change.
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Figure 32 shows a simple chain having the residual effect. The natural
frequencies are at 4.95 Hz and 123.28 Hz, the latter being a Tocal mode of the
small mass. The acceleration mobility from 1 to 10 Hz for the response at 1
due to force at 1, Y(1,1) shown in Figure 33 shows the residual effect.

2 kg 2kg 5 x 1077 kg
e P

3 \/\J\f\/\‘ 2 pWlIA

869 N/m 300 N/m

Figure 32. - Simple chain system with 5% structural damping.

10

IMAGINARY

N

REAL

Acceleration Mobility
m/Ns?

-10

0 5 10

Frequency, Hz

Figure 33. - Driving-point acceleration mobility at mass 1
of the chain of Figure 32.

Y(1,1) is almost identical to Y(1,2) and would be indistinguishable from
Y(2,2), shown in Figure 34, if the local mode were removed. The slope of the
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mobility from 4.8 to 5.07 Hz is virtually the same in Figure 33 as in Figure 34
and differential mobility parameter extraction methods, such as dS/df2 and the
matrix difference method, on the 4.95 Hz mode would be negligibly affected by
the residual effect. These methods can be used to accurately obtain modal
accelerations at driving points whenever the slope (dV/dw) resulting from high
frequency local modes is small compared to the maximum real or imaginary mobil-
ity slope at the natural frequencies of interest. The accuracy of parameter
extraction methods that are not of the differential mobility type is seriously
affected at driving points exhibiting the high frequency residual effect.

10
>, IMAGINARY
had
=
o
= o &
e T O
(=] =
FE
© REAL
O
(8]
O
<L

-10

0 5 10

Frequency, Hz

Figure 34. - Driving-point mobility of mass 2 of the
chain of Figure 32.

If the high frequency residual effect is to be retained there are two ways
to deal with it without shaking to very high frequencies. Because it is essen-
tially a driving-point phenomenon, one can shake at each of the driving points
having the effect and represent the effect as a flexibility term equal to the
constant difference between measured displacement mobility and the displacement
mobility synthesized over the frequency range of testing as shown by Klosterman
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10 11

and Lemon ~, and Ewins Alternatively, one could shake at only one point with
the points having the effect, and at which driving point mobilities are desired,
weighted by attached masses. The effect of the attached masses could then be
removed using the analytical testing equations as follows:

s h r N\

1 Vn(s)

Y22 ) ) E Yoz

4y33» = ([1) - [Y,..] _[Ym.] - [m..] ] +§3§s)» (203)
\ : : J

where Vrr is the matrix of measured acceleration mobilities at and among the
motion coordinates with the attached masses, L is the diagonal matrix of the
attached masses (in three spatial directions if necessary) and the parentheti-
cal superscript s meaning derived from modal synthesis over the frequency range
of testing.

Effect of Damping Estimate Variations in the
Matrix Difference Method

The matrix difference method involves the difference between mobilities
above and below each natural frequency. Let Wy be the frequency below the
xth mode and Wy o be the frequency above the xth mode. For illustration pur-

poses let
wey = /1-s and wep = VIts (204)

where s is much Jess than unity. Then

Aw

_ - L e X
bu, = wgq = 0y = (V/1-s - /T+s) Q= -sq or-s oy (205)

and in terms of displacement mobility:
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N A, . g. g.
_ Jjki i i
ij(wx1) ij(mxz) T Ll 2 ? - > (206)
=1 g;0, Wyl
-5t ig. 1 - + g
Q. ! 0.2
i i
let
_ % 9
9 i T T2 T2 (207)
x1 . X2
1 - 9.2 + ig; 1 - 9,2 + ig.
i i
Then, in matrix form
A. .
_ k
{Aij(x)} - [91 A“xiJ 9_39_1? (208)

In view of equation (205), the xm th term in the gau matrix may be expressed

as
2
-2 555.85_
M g 2
X QM
I Buym =TT N (209)
2 2 2
Q Q Aw Q
] - X% X X| g 2, i2g, |1 - X
Q 2 Q 2 , M M Q 2
M M M

In the x row of the gap matrix this term shows the coupling of the xth
mode with the mth mode when ratioed to the diagonal term 9y Auyy- It will be
shown that: (1) when the modes are widely separated (i.e., for any mode x,
o -1 << (- 9,) o and o >> (1 +49g, 1) 2. and o << (1 - gx+]) 2,47 and
Qx+1 >> (1 + gX) QX), then a frequency difference of AwX/QX = gy is preferred
in that it is least sensitive to errors in g; (2) for close modes, wa/QX should
be less than 9,5 and (3) for Amx/Qx much less than g, the maximum error in the
diagonal term will be proportional to the error in 9y -

Figure 35 shows a plot of the x row real part of the gap matrix for hys-
teretic damping of 10% for various values of AmX/QX equal to or less than
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8LL

gAuR

1.

|
(&3]

-1.0

Q/R

Figure 35. - The real part of the row for the 2 natural frequency in the gau matrix

when
wa/Qx <g. .



X

9, = .1. As seen from Figure 36, the imaginary part of the coupling of the x
This also

mode with all other modes also drops off with decreasing Amx/Qx.
occurs in Figure 35. Figures 37 and 38 illustrate the severe coupling effects

when wa/QX is greater than g by a Targe amount.
peaks when AmX/QX is .4 for g = .1 in Figure 37.

The matrix difference method remains exact for values of Amx/QX much
larger than g but the increased coupling with nearby modes tends to make the

Note the development of two

gAu matrix less well conditioned both physically and numerically.

As an illustration of the variation in coupling of two modes in the g
matrix with variation in wa/ﬂx, consider a case of g = .1 and sz = (1 - gM)QM .
The following calculations are made for ay = 1.05409 and g = .

AwX/QX A& gau

g 2, @ " G Q

2 2 .946 68° .800 0°

1 N .834 32° .000 0°
.8 .08 .697 75° .976 0°
.5 .05 .447 84° .800 0°
.2 .02 .180 89° .385 0°
. .01 .090 90° .198 0°

2
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-1.0

/0

Figure 36. - The imaginary part of the row for the 0, natural frequency in the

gAu matrix when wa/Qx <9y
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Figure 37. - The real part of the row for the Q, natural frequency in the gau matrix

when AwX/QX > g -
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Q/Q

Figure 38. - The imaginary part of the row for the 2y natural frequency in the

gan matrix when wa/QX > 9g,-

1.2



If g were .01 the same case of close modes has the following coupling
terms.

wa/QX Aw,, gAu
g 2 @ " @q

20 .2 .159 5° .100 0°
10 . .670 137° .198 0°
8 .08 .281 157° .246 0°

5 .05 L1 166° .385 0°

2 .02 .037 168° .800 0°

1 .01 .018 168° 1.000 0°
.5 .005 .009 169° .800 0°

Sensitivity to g

When 2, = Oy the diagonal term from equation (209) reduces to

29, Aw, /9
_ X X X
9y My = 713 (210)

2
AwX 2
L?f} T 9y

As seen in Figure 39, the diagonal term in gau is least sensitive to the value
of g when wa/Qx ~ g. In that vicinity a 4:1 variation in g produces only a
+ 10% change in the value of the diagonal term.

If aw /q, is very small in equation (210) compared to g then
wa/QX

9y Buy, =+ 2 ——EE:__ (211)

and percentage errors in the diagonal term become proportional to percentage

errors 1in g.
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If g is so small that there is negligible damping coupling with other
modes then one can assume any small value for g.

Aw
Let 5—5 = .05 as an illustration of a case with small g. Then,
X
g Ay Auyy for Qy = 1.1 Q
0 40 2.91 0°
.001 39.98 2.91 0.7°
.005 39.6 2.91 3.5
.01 38.46 2.9 7.0
.02 34.48 2.86 14.0

Effects of Close Modes
Modes i and i+1 are considered to be close when

Q < (1 + gi) Q.

i oor Q> (1 - 91+1) 2441 (212)

i+1

where g is structural damping and the natural frequency Qs > 95-
It should first be noted that s and g; are global properties. Therefore,
one might find a; and 95 from one mobility plot and 2541 and 9547 from a dif-
ferent mobility. One must be very cautious in dealing with what are presumably
close modes and make certain that they are, indeed, different modes if the
modal information is used to synthesize mobilities at which the structure was
not shaken. The method for doing that is beyond the scope of this report.
Structures are not purely linear systems and slight differences in measured
natural frequencies from mobility to mobility do not necessarily indicate dif-

ferent modes.
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The jkth displacement mobility of a free system at frequency w is given.

by
E., N A,.
Vo (o) = - K+ 3 3K ] (213)
J w i=1 @ w
Tl -"5+1g
Q
.i
i) Ejk, a ? Nk ] (214)
d? W de? i1 0.2 2
i 1 - 9—§-+ ig
]

where E.k is the jkth rigid body acceleration coefficient. At 1 Hertz,
Ejk/w4 = Ejk/1559, so for practical purposes in such structures as helicopters

and airplanes

dWile) g g jki 1 (215)
do?  do? 191 @,° w2
i1 - —5+ig
9
.i
As shown by Kennedy and Pancu9
d ! = ! (216)

d(wz/gf) 1 - wz/gf rig|l (O - wz/gf + ig)?

or
—gg p o= W2 (217)
dg

and furthermore

dv. s, as, .
Joo Pk 2 P Rk 2 v Rk 22 (218)
def gy Tdft 41 2 T gm gfZ TTN
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ds. dS

Let —k be the value of Jk at the ith natural frequency. Then
2 2
df ; df
ds. ds.
2 Jjk _ Jk
N.© |—5=| = - |—— (219)
Tolaf? | e

and equation (218) can be written as

ds. A.. .
2 k
- {—gk} - [91-“1?] 57 (220)
df” )5 959
or
Asil 12 2]‘1 dS sy
2 20 7 |9i¥ - 2 > (221)
950 : af? |

a 1imiting case of the matrix difference method. It is not necessary for any i

ds.
that %k be a peak. If the modes are not very close, as defined by equa-
df
tion (212), then the gzuz matrix approaches the unit matrix. In any case, the

diagonal terms of the real 92u2 matrix will always be -1.00 and all other terms
will have an absolute value less than unity.

Defining
) 77
Vi =/ Pk /999 (222)

The orthonormal modal elements are obtained in the usual manner and any

mobility
E N
_ 4m 2
Vom(@) = = 7=+ L ¥i¥mi 9i% (223)
w i=]
or, in terms of acceleration mobility
N
_ 2 2
Yzm(w) =B 121 Yoitmi 9iMy
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The advantage in using gzu2 matrix for a system with the following natural
frequencies and modal structural damping coefficients is shown below.

Damping g . .2 . .15 .
Natural frequency (Hz) 5 9 10 11 15
Forcing frequency o
(Hz)
5 -1.000 .065 .017 .032 .012
9 .002 | -1.000 123 112 .023
10 .001 .067 |-1.000 .062 .029 REAL
1 0 100 | 117 | -1.000 .041 g2,2
15 0 .012 .006 .028 | -1.000
5 0 - .041 |- .005 |- .013 |- .003
9 0 0 - .179 | - .128 |- .007
10 0 416 | 0 -~ .423 |- .01 IMAgIgARY
11 0 098 | .144 | 0O - .018 9H
15 0 .003 .001 010 | o
5 1.000 .077 .017 .035 .013
9 .002 1.000 .217 .170 024 \aeNITUDE
10 .001 421 | 1.000 .428 .031 2,2
11 0 141 186 | 1.000 .045
15 0 .013 .006 .030 | 1.000

The 5 Hz mode is seen to be essentially decoupled from the other modes in
2.2, That is, it is decoupled insofar as dS/df’ is concerned. The 9 Hz mode
is influential at 10 Hz since 9 Hz x (1 + .2) = 10.8. In the magnitude table
of gzpz the 9 Hz mode has a value of .421 at 10 Hz. The coupling, it is seen,
occurs in the imaginary gzuz. Note that the 10 Hz mode is only half as influ-
ential at 9 Hz as the 9 Hz mode is.at 10 Hz. Similarly, the 11 Hz mode is

2.3 times as influential at 10 Hz than the 10 Hz mode at 11 Hz as equation (212)
indicates. In other words, 11 x (1 - .15) = 9.35, less than 10, but
10 x (1 + .1) = 11, just equal to the next higher mode.
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The 92u2 matrix is clearly well conditioned. If the 9 Hz mode were,

instead, 9.9 Hz the .421 value in the magnitude table would become .999 at 10 Hz

and the value at 9.9 Hz from the 10 Hz mode would be .962 and the coupling

would appear mainly in the real matrix. The conditioning is worsened but not

necessarily unacceptable.
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CONCLUDING REMARKS

Analytical testing provides a practical methodology for combining struc-
tural dynamic analyses with flight vibration performance. This report has pre-
sented analytical methods for evaluating the flight vibration and strain effects
of structural changes. The changed flight responses are characterized by the
dynamics of the change, original flight test data, and shake test data. Basic
analytical testing equations were derived to accommodate a category of changes
which included mass, stiffness, absorbers, and active vibration suppressors.

IMTustrations of the analytical testing methodology were presented using
flight test and shake test data measured on an AH-1G helicopter. The applica-
tions were directed to the practical acquisition of helicopter vibration data
and the utilization of the method. Results of this investigation indicate the
possibility of combining flight data and shake test data with structural
changes in the helicopter airframe to predict the effects on flight vibrations
and strains. The results do not represent experimental verification of analy-

tical testing in any particular application.

Modal analysis based upon the measurement and past test processing of
transfer functions constituted a major part of the research associated with
analytical testing. The vibration testing procedures and modal analysis tech-
niques of the AH-1G were described. In addition, special considerations were
discussed to establish consistent data acquistion and to minimize problems
associated with modal analysis of complex structures.
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APPENDIX A
. DERIVATION OF THE BASIC ANALYTICAL TESTING EQUATION

Consider two structures with degrees of freedom F and C connected at I

interface coordinates.

£ forces and
moments

The structure F is excited by several external forces and moments, referred to

as forces for brevity. Let {q} define the response of structure F alone such

that

F
(A1)

The structure C represents a dynamic change and the coupled equations of motion

are, assuming the external forces do not change
- : N
Zre Zr1 0 I e
e 2yt Zgp) 25 I (A2)
0 ¢y ¢ a¢
L J \

where the superscript C defines the free body impedances for structure C and
{q'} defines the response of the coupled system. From the definition of the

matrix inverse it follows that
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Zer ZF1 0 Yer Ye1 Yec
i 7.+ 2% £ y! y: vl =1 A3
IF 11t fie IF 11 ¢ - (A3)

c C : . . |
0 Ze ZCCJ Yer Yer Yee
Equation A3 gives the following relationships.
Zep Yep Y Zpp Ve G [ I] (A4)
7o oY o+ (Z..+2%) yvi_+ 2% v =0 (A5)
IF FF i1t ) Yirt fic Yer
C 1 C 1 —_

Zer Yip tofee Yo <O (A6)

Substituting for Y. from equation (A6) into equation (A5) and simplifying
leads to the result

1 C'] 1 -
Zyp Yep *(Zppr Y)Y =0 (A7)
where
C-1 _ ¢ C .C-1 .C
i1 = I1p - Iie fee e (A8)

Equation (A8) is obtained by considering the matrix inverse definition for

structure C alone such that

C C C C
11 Z1¢ Y11 Yic
- [ 1] (A9)
C C C C
Ze1 Zec Yer Yee

Solving for Y%I from equation (A9) gives equation (A8). Considering equa-

tion (A3), it also follows that
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Zee YL + I Yi = 0 (A10)
Zoo YL o+ (Zo. + 28y v o+ 78 oy = F I (A11)
1F Y1 i1 ) Yt 4 Yer |
C 1 C 1 —_
28 Yy o+ 28 Y o= 0 (A12)

Substituting for YéI from equation (A12) into equation (A11) and simplifying
leads to the result

[] C_] 1 - .
Zrp Yer ¥ (Zgp + Yip ) Yoo ‘_[I J (A13)
Combining equations (A4), (A7), (A10), and (A13) gives
Z z Y, Y,

FF FI FF FI
= [I ] (A14)

C-1 . .
Zip L1+ Vg Yir Y11

or, after rearranging equation (A14)

-1

Yee Y Yer o Yhr ! 0
= (A15)
. . c-1 C-1
Ir Yoo ir Yo i Yip TH Y Yo
Making use of the matrix inverse definition, matrix algebra reduces equa-
tion (A15) to
Yer VI Yer YR : 0
_ (A16)
D C 1 c-1 -1
YIF Vi1 Yip Yoo (-0t Vo) Yo (D Ypp Yo
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or,

D c .
e = YR Ve Opp V)T Y (R17)
vio o= v v (¢ o4y )Ty (A18)

IF i~ i Win Vi) Yir

Since the external forces are on structure F, postmultiplying equations (A17)
and (A18) by the force vector yields

o} 9 ] B o)
or, in a slightly different form
{q'} - {q} - [}ql} {? +yS7 YII]'] {??1}—] {qI} (A20)

Equations (A19) and (A20) are independent of the number of degrees of freedom
of structures F and C. In other words, the change in response at any point on
structure F only requires information at that point and at the interface points.
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APPENDIX B
COUPLED ROTOR/FUSELAGE VIBRATIONS AND LOADS

Consider the helicopter dynamics representation shown below.

Let z', z", and z define the equations of motion (impedances) of the rotor
alone, fuselage alone, and coupled rotor/fuselage, respectively. Similarly,
let y', y", and y define the corresponding rotor alone, fuselage alone, and
coupled rotor/fuselage responses. The matrix equations of motion can be
expressed in terms of impedances as:

Rotor alone

ZpR ZpH yél fr
2R Zin yﬁJ 0

Fuselage alone

du e [ :

20 ZFF YF 0
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Coupled rotor/fuselage

ZRR ZRH R
Zun Zpy Zye Wt = {0 ' (B3a)
_0 2 ZFF F| 0

or
ez O] YR r]
2ip  (Zhgtzy)  ze Wht = 10 (B3b)
0 T Yr 0

Equation (B3a) can be rearranged in the form
Zgr YR Y %y Yy T TR (B4a)
ZHH ZHF Yy s ‘R IR (B4b)
2 ZFF | | o o

Define

=" 2R YR (B5)

where fH are the rotor hub loads applied to the coupled rotor/fuselage to give
the coupled hub and fuselage responses as shown below.
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By definition from equation (B4b)

-1

f HH YH

=V

From the definition of mobility

2w ZwF Y Yur Nk 0
2 ZFF Yew  Yrr o I
Solving equation (B7) shows that
Y = (g - 2 2 2

Thus, equation (B6) becomes

_ -1
fu = (Zuq - 2yp Zep Zgy) Yy

Since Zyy = ZQH + ZﬁH’ equation (B9) can be written as

-1

= (g 2l - 2 2P 200 Oy

From the definition of mobility for the fuselage alone

Yy i1 0

T HF

Ziy Zhr HH

YII

FH Y, 0 I

ZEH ZFF FF
Solving equation (B11) shows that

-1 -1

Vi = (2w - Zhe 2R 2R
and equation (B10) reduces to
fo= (20 + Y0 T) y
H HH HH H

(B6)

(B9)

(B10)

(B11)

(B12)

(B13)
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Substithting for yp from equation (B4a) into equation (B5) also gives

f fo + z

) -1
H™ " Zur Zpr 'R * ZHR ZRR ZRH YH (B14)

Equation (B14) can be simplified by considering a rotor to a fixed hub so that
equation (B1) becomes

Rotor to fixed hub

R TRy YR fr
= (B15)
Zup Zi 0] f!
Solving for f/, from equation (B15) gives
.f.'l = ZI yl = ZI Zl '] .f: (B-|6)
H HR 7R HR “RR R
The forces transmitted to a fixed hub are
foo= = fi ==z} 2he T f (817)
0 H HR “RR R
Since th = Zup and ZéR = Zpp» equation (B14) becomes
fo= o4z zh T 2 (B18)
H- 0" “HR “RR  ZRH YH
Some additional observations concerning fO can be made by considering equa-
tion (B3b) rearranged as follows:
ZRR - ZRH YR 0 fr
{ | + yF = (B19a)
i (Zltzi) | Yy Z4F 0
IR
[b ZEH} b + (ZEF) YE = 0 (B19b)
—_ yH
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Substituting for yg from equation (B19b) into equation (B19a) gives

ZpR ZpH YR fr
] ] I n u'] n N (BZO)
Zip (Z'unt 2 - e ZEe ZEg) | |V 0
Further simplification of equation (B20) results in
[(zly, - 2l zoo! 2h) + (2l = 2, 2820 200] yy = - 20 207) f (B21)
HH ~ 2HR “RR ZRH HH ~ 2HH %FF 2FH’{ YH HR 2RR 'R

Equation (B21) can be reduced still further by taking advantage of the mobility
definition for the rotor alone.

2R ZRH YR Vi I 0
= (B22)
ZR 2 e Vi 0 I
Solving equation (B22) shows that
Y, = (z))y - 2Z! 207V 2 )_1 (B23)
HH HH HR “RR RH
Substituting equations (B12) and (B23) into equation (B21) gives
P R L (B24)
HH HH 7 YH HR “RR 'R
and equation (B17) can also be written as
f. = (Y'_] + Y"_]) (825)
0 HH HH / YH

Substituting equation (B25) into equation (B18) and making use of equation (B23)
results in

z! + Yn']) yH (826)

fy = (2 + Viy
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which is identical to the result derived in equation (B13). Eliminating yé
from equation (B1) gives
1

Yo

[ - ] |'1
WHOYH = R ZRR T (B27)

RR 'R

so that

1

f yﬁ (B28)

0= YhH
Combining equations (B25) and (B28) shows that

|_] ||_-] - |-1 1
Yig * Yo ) Y9 = Vi Y4 (B29a)

or,
1

Y"-1 (yH - yH) (Bng)

hH Ye = YEH

Therefore, fH can be expressed as

- 1 |"-l 1
fu=fo* Zur ZRR ZRH M (B30)
- 1 1'1
fy = fo+ (2 - Vi ) Yy (B300)
—_ 1 u']
fH = (zHH + YHH ) Yy (B30c)
- 1 I—] 1
fiy = 2o Yp ¥ Vi O - W) (B30d)
f£oo= vt (B30e)
H™ "HH YH
where “1.-1
YHH = (ZHH + YHH ) (B31)

In summary, the rotor hub Toads, fH’ can be expressed in terms of loads trans-
mitted to a fixed hub and modified by the rotor hub impedances alone, as well

as the coupled rotor/fuselage hub responses.
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From another point of view equation (B3b) can be written as

Zgr YRt Zpy Yy = TR (B32a)
ZiH Z4r| | YH - Zpp YR T Zpy Yy
- (B32b)
Zew ZFE| \F 0
Define fH = - ZﬁR Yg - ZﬁH Y4 (B33)

where %H are the rotor hub loads applied to the fuselage alone to give the cou-
pled hub and fuselage responses.

J

Comparing equations (B5) and (B33) shows that

fH = fH - ZHH Y (B34)
Applying equations (B30), %H can be expressed as
~ _ I_'l
fH = fo - i Yy (B35a)
E - ||"-I
fH = YHH Yy (B35b)
e - 1’] '
fy = Y O - vy) (B35¢)
Also from equation (B32b)
H "l B36
= fy (B36)
Ve Ven
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_Equations (B35) and (B36) serve to explain the nature of coupled rotor/fuselage
vibrations with respect to rotor/fuselage dynamic interactions. In particular,
the impact of fuselage dynamics on fH and consequently on fuselage vibrations.
Helicopter rotor excitations are very large and one might suspect that hub
responsés of a rotor with no fuselage (yﬁ) may be very large when compared with
hub responses of the coupled rotor/fuselage (yH). In other words,

Yl >> Yy (B37)
As a consequence of equations (B37) and (B28), equation (B35c) becomes
(B38)

Therefore, the rotor hub loads acting on a fuselage without the rotor are nearly
independent of the fuselage dynamics. Under this restriction the rotor hub
loads are equal to the forces transmitted to a rigid support. Consider the
extreme case of a fuselage with zero damping which has a natural frequency pre-
cisely at a harmonic of the blade passage frequency. Then yﬁ = Yy since the
fuselage has zero hub impedance (or infinite hub mobility) in this extreme case.
If the undamped fuselage has a natural frequency only slightly removed from the
excitation frequency, then yﬁ >> Yy appears plausible and the conclusion of
equation (B38) follows. Also, if with fuselage dynamic changes Yy remains

small compared to yh, then there is 1ittle change in the transmitted forces as

concluded in equation (B38).

However, the condition that Yy is small compared to yﬁ is a sufficient but not
necessary condition for small changes in fH' From equation (B20)

§ 1 "]
YR RR “RH fr
= (B39)
z/ (z)yy + Y”'1) 0
YH HR HH © "HH
Consider the case of a fuselage with a natural frequency at the blade passage
frequency for a system without the rotor. In this example YﬁH is very large
or Yﬁg1 is very small and equation (B39) indicates that
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Yy = Y (B40)

(B41)

If Yﬁ;1 does not change appreciably due to fuselage dynamic changes and remains

small, then there is negligible change in Yy as equation (B39) shows. As a

~

result there is negligible change in the transmitted rotor loads, fH’ given by
equation (B41). To illustrate this case, consider an isolated hub-transmission
where

Y (B42)

HH

>> Yyr
and Yﬁ;] is very small. For a change in the Fth degree of freedom of the fuse-
lage due to an impedance change AZpes the changed driving-point hub mobility

is given by

YII YII

HF "FH
Ay = Yoy - ———mm (B43)
HH HH 1 +oym

AZFF FF

Since YﬁH >> YﬁF’ it follows that

AYpy = (B44}

HH = THH

and AYﬁg] remains very small.
Now consider the opposite situation where Yﬁg] is very large or YﬁH is very
small compared to the z' matrix in equation (B39). This makes yy very small

compared to yﬁ and the conclusion in equation (B38) follows.

If at blade passage harmonics, equation (B42) does not hold for various
fuselage degrees of freedom, then the fuselage has a major as opposed to Tocal
resonance and the transmitted forces may change considerably due to fuselage
dynamic changes. However, if the fuselage were separated from the rotor, then
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such a condition could not be tolerated in practice. A major resonance has
modal accelerations relative to points other than the hub which are larger
relative to modal accelerations of other modes. A large modal acceleration

can be Tooked upon as a small effective mass since

¢sn @
_ Jn “kn
Ajkn = (B45)

Physically, a small effective mass contributes to the response more signifi-
cantly than a large effective mass for the same loading conditions.
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